
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

A TWO-WAY METAMODELING APPROACH
IN WEB ENGINEERING

XHEVI QAFMOLLA

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor

Ph.D. Programme: Electrical Engineering and Information Technology
Branch of study: Information Science and Computer Engineering

Supervisor : doc. Ing. Karel Richta, CSc.
Co-supervisor : doc. Ing. Vojtěch Merunka, Ph.D.

Prague, February 2015

ii

Thesis Supervisor:
DOC. ING. KAREL RICHTA, CSC.
Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Thesis Co-supervisor:
DOC. ING. VOJTĚCH MERUNKA, PH.D.
Faculty of Economics and Management
Czech University of Life Sciences Prague
Kamýcká 129
165 21 Prague 6
Czech Republic

iii

Abstract

This dissertation thesis introduces a new model-driven approach in Web engineering that
aims to decrease the communication gap between stakeholders during the early phases
of the project and reduce the development effort required for the production of the final
Web application. The approach has been applied in the domain of content-based Web
applications and is supported by related methodology and proof-of-concept tools.

While several model-driven approaches specialized in the discipline of Web engineering
have been developed in the last decade, the majority of them is outdated, or is applied
under specific conditions in practice, usually involving a high cost of adoption. The main
reason is that most of these approaches apply the modeling part in a top-down mode,
i.e. they focus on a high-level conceptual model of the Web application upon which later
are applied transformation techniques to generate the final components. The drawback of
such approach is two-fold. Firstly, communication between stakeholders on a high-level at
the early phases of the project is ambiguous, leading to problems and increased overhead
effort at later phases. Secondly, transformation of an abstract model is complex and it
involves several errors and manual operations. In contrast, our proposal consists of a two-
way approach of model creation and transformation. Both technical and non-technical
stakeholders use a common low-level conceptual model to fine-tune requirements, such as
a rapid prototype of the Web application in HTML or other form (bottom-up phase). After
several iterations, once the model is enough mature, it is used as an input for the (semi-
)automated creation of the final application's components and its initial content (top-down
phase).

The proposed approach has been evaluated qualitatively in real-world case studies and
quantitatively through a large number of simulated projects using open-source Web appli-
cation templates. The achieved results are promising and they show potential improvement
in the practical application of model-driven techniques in the Web engineering discipline.

Keywords:
Web Engineering, Content-based Web Applications, Model-driven Development, Code

Generation.

iv

Acknowledgements

The completion of this thesis would not have been possible without the help and support
of many important people.

First and foremost, the biggest appreciation goes to my supervisor, Doc. Karel Richta
and my co-supervisor Doc. Vojtěch Merunka, for their invaluable help, directions and
advice in critical moments during the research and for keeping me motivated throughout
the years. Thank you to both of you!

Further I would like to thank the opponents of the thesis, for the time they have devoted
in the review of my work and helped me finalize this research with success.

To my colleagues and friends from the department of Computer Science and Engineering
in the Faculty of Electrical Engineering, Czech Technical University in Prague, who always
were there for me, giving objective and constructive feedback for my work – thank you to
all of you! Namely to Ing. Nguyen Viet Cuong and Ing. Tomáš Procházka M.A. for your
help and inspiration through the years of study – thank you!

Many thanks to the colleagues of O2 Czech Republic a.s., Etnetera a.s., Tinit s.r.o
and many other friends and colleagues from the Web community, for helping me review,
evaluate and improve my work by providing real-world data and experience.

This work has also been supported by the Department of Computer Science and Engi-
neering, Faculty of Electrical Engineering and by grants of Czech Technical University in
Prague.

v

Dedication

Dedicated to my wife for her endless patience and support of my work . . .

vi

Contents

List of Figures ix

List of Tables xi

Abbreviations xii

1 Introduction 1
1.1 Web Engineering Perspective . 1
1.2 Model-driven Perspective . 2
1.3 Web Modeling Discipline . 3
1.4 Rationale and Research Questions . 3
1.5 Thesis Outcome . 4
1.6 Problem Definition . 6
1.7 Research Approach . 7
1.8 Thesis Outline . 8
1.9 Textual Notations . 10

2 Background 13
2.1 Web Engineering Framework . 13
2.2 Web Application Characteristics . 14
2.3 Web Application Types . 16
2.4 Web Application Development Process . 17
2.5 Requirements . 17
2.6 Modeling in Web Engineering . 18
2.7 Usability of Web Applications . 18

3 State of the Art and Related Work 21
3.1 Web Modeling Language . 21
3.2 Unified Modeling Language . 22
3.3 UML-based Web Engineering . 24
3.4 CMS Modeling Language . 25
3.5 Web Engineering Method . 25
3.6 Other Model-driven Approaches in Web Engineering 28

vii

viii CONTENTS

3.7 Survey on Practical Application of Related Works 28

4 A Two-way Metamodeling Approach 31
4.1 Prototyping the Presentation as a Conceptual Model 31
4.2 A Generic Metamodel for Content-based Web Applications 34
4.3 Semi-automated Generation of the Web Application 36
4.4 Administration of the Content . 41
4.5 Limitations . 45

5 Case Study 47
5.1 Requirements and Prototype . 47
5.2 Generating the CMS from the HTML prototype 51
5.3 Administration of Content . 54

6 Evaluation and Results 55
6.1 Qualitative Results . 55
6.2 Quantitative Results . 59
6.3 Comparative Evaluation . 62

7 Conclusions and Discussion 67
7.1 Conclusions . 67
7.2 Discussion . 68
7.3 Summary . 70

Bibliography 73

Publications of the Author 79

A Anotace 83

List of Figures

1.1 Context of the domain of research . 5

1.2 Overview of the thesis outcome . 6

1.3 Action research method . 8

2.1 Highlighted areas of Web engineering framework, by Kappel et al., affected
by this research . 15

2.2 A typical architecture for Web applications 15

2.3 Categorization of Web applications . 16

3.1 Examples of WebML: a) data model, b) hypertext model, c) process model 22

3.2 UML examples of: a) class diagram, b) communication diagram, c) use-case
diagram . 23

3.3 Overview of UWE models . 24

3.4 Abstraction levels and involved user roles in CMS-ML 26

3.5 Approach overview and abstraction levels of WEM 27

3.6 Chronology and maturity of related approaches 28

4.1 The classical process of Web application development (above) vs. our pro-
posed one (below). 33

4.2 Simplified view of main components of the proposed metamodel 35

4.3 Scheme of semi-automated generation of CMS 37

4.4 Algorithm for parsing the input HTML prototype 39

4.5 Parsing demonstration from part of a page 40

4.6 An excerpt of a typical CMS administration interface 41

4.7 Use-case diagram of the administration operations 44

5.1 Structure and content of the initial HTML prototype 49

5.2 Preview and content blocks of the homepage in the HTML prototype . . . 50

5.3 An excerpt of the homepage representation in HTML and “readable” JSON
format . 52

5.4 Recursive parsing and storing of the file content and regions 52

5.5 Part of a page (above) and its database representation in the CMS (below) 53

5.6 Administration options based on the content type 54

ix

x LIST OF FIGURES

6.1 Graph showing percentual split of templates by page types 60
6.2 Graph of templates and number of manual operations 61
6.3 Total number of manual operations by number of page types and its trendline 62

List of Tables

3.1 Survey results about some MDD-approaches 29

6.1 Results of qualitative evaluation . 58
6.2 Comparative evaluation criteria and their support by our and other related

approaches and languages . 65

xi

xii LIST OF TABLES

xiii

xiv LIST OF TABLES

Abbreviations

AJAX Asynchronous JavaScript and XML
CBWA Content-based Web application
CGA Completeness of Generated Application (comparative evaluation criteria)
CMS Content Management System
CMS-IL CMS Intermediate Language
CMS-ML CMS Modeling Language
CSS Cascading Style Sheets
DOM Document Object Model
DM Support for Domain Modeling (comparative evaluation criteria)
HTML HyperText Markup Language
IT Information Technology
JSON JavaScript Object Notation
MAB Ability to Model Applications Behavior (comparative evaluation criteria)
MDD Model-Driven Development
MOF Meta-Object Facility
MUI Modeling of User Interfaces (comparative evaluation criteria)
MVC Model-View-Controller
NPF Support for Navigation and Page Flow (comparative evaluation criteria)
OMG Object Management Group
OOHDM Object Oriented Hypermedia Design Method
OOWS Object Oriented Web Solution
PI Platform Independency (comparative evaluation criteria)
RDBMS Relational Database Management System
SaaS Software as a Service
SDLC Software Development Life-cycle
SQL Structured Query Language
TM Transformation of Models (comparative evaluation criteria)
UML Unified Modeling Language
URL Uniform Resource Locator
UWE UML-based Web Engineering
WebDSL Web Domain Specific Language
WebML Web Modeling Language
WEM Web Engineering Method
WYSIWYG What You See Is What You Get
WWW World Wide Web
XML Extensible Markup Language

Chapter 1

Introduction

Complexity of software systems has become de facto an indispensable issue that engineers
have to deal with from the early stages of the software development life cycle (SDLC). The
reasons are many: from the demand of higher levels in performance, security, reliability
and interoperability to new technologies arising at a fast rate.

With the growth of Internet, Web-based solutions to software problems have become
massively popular. Web engineering as a discipline encourages the application of system-
atic, controlled and quantifiable approaches for the development of high-quality, ubiqui-
tously usable Web-based systems and applications. Therefore an academic approach is at
hand when trying to improve the situation. On the other side, Web applications are now
already integrated within the commercial environment of small and large scales. Under-
standing the needs of the users is crucial for an academic approach to be useful in the
real-world projects. As such, it is necessary within a study to balance and combine both
scientific and practical perspectives. Throughout the thesis we highlight this fact, giving
emphasis to the benefits of being driven from an academic perspective, while delivering
also practical benefits side to side.

1.1 Web Engineering Perspective

Since the new millennium, designing and maintaining high quality Web applications has
been one of the major challenges of the community from different industries. Little em-
phasis has been put to the end-to-end process of what it means to create and maintain
high quality Web applications. Instead, solutions are typically built by simply applying
requirements at-hand and in an ad-hoc manner. This has lead to frequent problems in
usability, maintainability, quality and reliability [16].

Web engineering is a multidisciplinary domain, involving knowledge from many areas,
such as system analysis and design, requirements engineering, human-computer interaction
and user experience, testing, modeling etc. Touching such a complex set of concepts, makes
Web engineering as a discipline almost unique in the perspective of applying common
software engineering techniques. From a practical viewpoint, typically, the development of

1

2 CHAPTER 1. INTRODUCTION

a Web application requires people from these different domains of knowledge, who need to
work together with the same artefacts. It is crucial that at any phase of the process all
the stakeholders understand properly the requirements and work with the same notations.
That's why it is important that everybody “speaks the same language”.

In practice, however, due to different factors, many Web engineering projects fail to
meet the business needs, involving delays, exceeded budgets and/or failure to deliver the
expected functionalities. It is a similar pattern to the problem of the software crisis that
rose in the seventies due to a lack of suitable process models and application architecture
constraints [20]. So, addressing these issues with the aim of providing a better approach
to the discipline in general and to bring improvements in any of its specific areas is a task
that we consider and solve within this study.

1.2 Model-driven Perspective

Standalone applications that do not need adaptation, integration and future maintenance
is already considered an outdated concept. The Object Management Group (OMG) has
helped to reduce the complexity of software applications, lower their costs and speed up
their implementation [37]. OMG has founded and defined standards that stress out the
importance of a design-first approach in development, separating business and application
logics from the underlying platform technology. Such approach is very important for in-
creasing efficiency and quality of software applications and it is today a well established
concept, supported by the research community.

OMG highly recommends usage of models as “the core” of design and development
process of software applications. This approach is denoted as model-driven development
(MDD). Models represent, in this case, a part of the system's functionality, structure, con-
tent and/or behavior. Following MDD principles has many tangible benefits in practice, for
many reasons. For example, such approach makes it easier to reproduce implementations
of the same model and deploy it for different platforms, when they follow the same initial
structure.

OMG has defined through the years several standards, languages and technologies suit-
able for the software modeling domain in general (not only for Web engineering). Namely,
the most well-known outcome of these initiatives are the Meta-Object Facility (MOF)
standard [33] and its underlying mainstream modeling language called Unified Modeling
Language (UML) [51], which is a general-purpose modeling language. Models, however,
can be defined in any language as long as they are enough expressive for the given domain.

OMG follows a layered architecture of modeling. This means that depending on the
phase of the project or other affecting circumstances, one can use different modeling con-
cepts that may be generic, or specific, depending on the level of knowledge at the given
moment. Following OMG and MDD principles is crucial in order to provide a long-lasting
methodology, language or approach, regardless of the domain. Our work is heavily based
and inspired by the MDD technologies and principles.

1.3. WEB MODELING DISCIPLINE 3

1.3 Web Modeling Discipline

Web modeling, as a branch of Web engineering, putting models in the core of system-
atic Web engineering, has been a topic of research for several years. Existing approaches
aim to reduce ad-hoc development of Web-based applications and systems by introducing
technology-driven methods, as described previously. By definition, the Web modeling
discipline focuses on the design notations and visual languages that can be used for the
realization of robust, well-structured, usable and maintainable Web applications. Design-
ing and implementing a large-scale Web application usually upholds the approach of using
models for various abstractions of the involved aspects. Typically these concepts include
information structure, content, navigation and presentation.

However, while MDD has received considerable attention and is well on its way to
becoming a promising paradigm in solving difficult problems of software engineering in
practice, current Web modeling approaches are still “one step” behind. Some of them have
deployed tools and other facilities that assist their concepts. However, they are affected
by issues and limitations that are common up to a certain extent, such as supporting
specific platforms, only model-to-code transformation capabilities etc. In order to become
fully aligned with the MDD paradigm and to be embraced by practical applications, these
methodologies require more adaptation and transition support. Some relevant approaches
in Web modeling discipline are described in chapter 3 of this thesis (state-of-the-art).

We could generally say that MDD principles and existing Web modeling approaches
stand on two planes that are converging slowly. The reason behind this issue is that
aligning two different concepts at a high level, even though very similar, is a very complex
task. The track of Web modeling is missing the required degree of generality, by focusing
mostly on notional aspects and domain-specific concerns for the Web. In practice there
is still a large “gap” to be filled and this is one of the contribution that this research has
aimed to deliver.

1.4 Rationale and Research Questions

With the rapid expansion of the Internet over the last two decades, the World Wide
Web (WWW) and its usage have massively changed. So have changed the needs and
requirements for Web applications, which have become a solution for different projects in
many industries. Like never before, in the last years there has been such a fast pace in
bringing to the community new technologies supporting the development of Web projects
[17].

To keep up with these inevitable technological changes several activities have emerged
that deal with concerns from the user's and developer's perspectives. Systematic ways
and approaches have been introduced as an effective way of creating and managing Web
applications. However, as discussed previously, application of these methodologies is not
a mainstream in practice. On a large scale, most of the projects are executed in a “quick-
and-dirty” way, which leads to a huge fragmentation of solutions and platforms. This

4 CHAPTER 1. INTRODUCTION

happens because application of current methodological approaches is not seamless and it
requires specific setup of the team and the development environment. Therefore, studies
show that in practice the quality of the projects outcome is usually poor and the lifespan
of the products is short and cumbersome [18].

Throughout our research we have explored several areas in the Web engineering domain
and analyzed end-to-end the whole SDLC of Web applications, including design, imple-
mentation and usage [A.7, A.8]. During the exploratory phase of our research, our work
was involved in finding answers to the following research questions:

Research Question Q1
“What are the present difficulties in the domain of Web engineering today? What
are the current obstacles, limitations, drawbacks?”

Research Question Q2
“What is the state of the art in this field? What is the situation in practice? Are
current approaches applied properly? Are they effective?”

Research Question Q3
“Can MDD be applied in practice in the domain of Web engineering, and up to
what extent? What are the benefits, opportunities, strengths, future advances and
promises of such approaches?”

Finding answers to these research questions is a complex task, but it has been a useful
prerequisite for the proper definition of the thesis outcome and the benefits that it should
bring to the community. An answer to the research questions is presented in chapter 3
(state of the art and related work) and in the discussion section of chapter 7 (conclusion
and discussion).

1.5 Thesis Outcome

The motivation of our work is to design MDD-based techniques that, when applied in
practice, will improve the processes and outputs in the areas of Web application creation,
usage and administration. In previous works we have analyzed relevant MDD approaches
and methodologies in Web engineering to understand their strengths and weaknesses and
we have built upon lessons learned, as well as practical real-world projects outcome, in
which we have been involved [A.7, A.4, A.8].

We have looked at the domain of research from a broader perspective, see figure 1.1.
Through this work we have achieved a more specific definition of the problems, which
is described in the next section. Our proposed approach, based on a so-called two-way
metamodeling principle has been applied in the domain of content-based Web applications
(CBWA), one of the most important types of Web applications with a wide range of
application in the private and corporate environments [A.2]. There is currently to date,

1.5. THESIS OUTCOME 5

Figure 1.1: Context of the domain of research

approximately 67 millions of CBWA-s active, which accounts for approximately 6% of
overall online Web-based solutions in the world [6, 23, 55].

Specifically, the outcome of this work is a methodology for the (semi-)automated gen-
eration of a CBWA based on a corresponding metamodel and some tools to support
the methodology. Our work is largely based on natural processes, lessons learned, best-
practices and patterns from practice. The aim is to make the methodology automated
as much as possible (sometimes manual operations are required, therefore it is semi -
automated), general-purpose, flexible and easy to use, see figure 1.2.

The results achieved in experimental case studies and data from quantitative and qual-
itative evaluation phases show that application of the approach in practice is beneficial
and a further development of the tools in order to allow full integration in the commercial
environment can make the proposed approach a mainstream and standard solution, when
applicable to the given project.

6 CHAPTER 1. INTRODUCTION

Figure 1.2: Overview of the thesis outcome

1.6 Problem Definition

Currently, there are hundreds of Content Management Systems (CMS) and CMS-based
platforms known publicly and used for the creation and operation of CBWA [11]. Many
others are custom-developed and probably little, or not at all known to the community.

The fact that so many CMS platforms exist, indicates that there is a large diversity
in the methodologies behind their creation, which leads to fragmentation of solutions. Al-
though the main principle of putting models in the core of the development process is
sometimes applied, fragmentation still exists and new CMS-es are still being developed in
an ad-hoc way. Moreover, with the introduction of software-as-a-service (SaaS) architec-
tures, CMS became an online tool. This has made the situation even more complicated
by introducing a whole new level of concepts and options for Web applications content
creation. Fragmentation of platforms is a problem when it comes to making a choice of
the system in the real world. Several studies and comparisons have been made between
features that these systems provide to the end user [2, 5, 12]. Analyzing these features and
making a decision is a hard task that requires a lot of time and resources.

Behind all of this complexity there is a confused user, who has his needs and must make
a choice. The choice of the CMS is a decision that will affect them for a long period of
time and therefore it is very important. The project owners, who usually have little or no
technical experience, are not able to use out-of-the-box solutions without the involvement of
a technical person, therefore communication between them is crucial. Another important

1.7. RESEARCH APPROACH 7

fact to consider in practice is that even for simple Web applications the corresponding
overhead related with the initial platform setup can be huge. These facts lead to increased
costs and resource overhead in the project. Typically, the complexity for the development
of a Web project involving creation of a content-based Web application varies between a
few man-days and several hundreds, depending on its size [32, A.7], while naturally, it is
in the benefit of everyone involved to keep these costs down.

Considering these challenges of the Web engineering community, we have defined the
following problems around which our research work was carried out and evolved towards
the delivery of a solution:

Problem P1
“To define model(s) of the Web application that will allow the users to communicate
conceptually on the same level, while also allow automation of some parts of the
application development.”

Problem P2
“To design a methodology for the creation of a content-based Web applications that
will be enough simple for practical usage by the non-technical user, while still enable
the technical user to adapt and extend it in a natural way.”

The results that we have achieved in our work are promising and they may provide
radical improvements to the state of art in the domain, once the supporting tools will be
enough mature and integrated in the business environment.

1.7 Research Approach

Given the fast-evolving, utmost nature of Web engineering discipline in general and Web-
related technologies in particular, it was important to embrace such an approach for the
research, that would allow gradual modification and improvement of the produced out-
comes. To find an appropriate approach for this task we have been inspired by the action
research model and method defined by O'Brien R. [38]. This model allows for a progres-
sive problem solving and reflective feedback process that can be applied in research work,
where individuals and/or teams can cooperate effectively. It is a reasonable way of solving
a complex and evolving problem through time. This model involves planning, actions- and
results-taking in an iterative and feedback-loop way, see figure 1.3 [1].

Such a choice of the research approach has been very important. Throughout the re-
search's life-span, there were several pivoting points, when we had to change the course
and look at the presented problems under different decisive criteria, or from another per-
spective. This research project began with the aim to define a metamodel for the ultimate
definition of Web projects (of any kind). Soon we realized that such a scope is very large
and complicated and that we needed to focus on a smaller domain. Therefore we decided

8 CHAPTER 1. INTRODUCTION

Figure 1.3: Action research method

to focus on CBWA as one of the most widely-spread types of application in general prac-
tice. However, we tried to keep the invented principles applicable not only in the CBWA
domain, but more widely, whenever possible.

A second pivoting moment during the research was the input from practical, real-world
projects, in which we were involved. This gave us some substantial research data to focus
on for the analysis of potential pros and cons of existing methodologies, as well as our own.

Finally, we understood that a metamodel for the Web engineering domain is not enough
descriptive to be advanced and embraced from other peers in the research community. So
we bundled the metamodel within a methodology and developed some proof-of-concept
tools to support it. Reaching towards the end of the research period, we evaluate the
research approach as crucial for the successful completion of work and achievement of
positive results.

1.8 Thesis Outline

In this section we give an outline of the chapters contained in the thesis, for easier un-
derstanding of its structure and for a better experience when referencing to the required
content.

1. Introduction: In the introduction chapter we cover the basic rationales of why this
research has started and what it tries to solve. We look at current situation and

1.8. THESIS OUTLINE 9

needs from the perspectives of Web engineering discipline, the OMG and model-
driven development point of view and from an intersection of the two, i.e. the Web
modeling domain. Further we outline the initial research questions and the outcome
of the thesis, describing also the problem definitions. We also discuss the methodology
and phases under which this research was carried out. Finally we give some textual
notations that are used throughout the thesis content.

2. Background : In the background chapter we describe some fundamental concepts
around the Web engineering discipline that are relevant for this research. We high-
light characteristics of the Web applications that are important for a further under-
standing of the proposed approach. We also describe the areas of Web engineering
that are impacted by this research, namely the Web development processes, the mod-
eling paradigm in Web engineering, the requirements of Web applications and their
usability principles.

3. State of the Art and Related Work : In this chapter we present the state of the art
in the domain of Web modeling, covering selected approaches and languages that
are related with our research work. Namely, we discuss these approaches by giving a
definition of their fundamental concepts and examples of their corresponding notions.
We also discuss the most important strengths and weaknesses for each approach. A
more in-depth evaluation, including a comparison between these approaches and our
proposal, is given later in chapter 6 (evaluation and results).

4. A Two-way Metamodeling Approach: Chapter 4 covers the main results of our re-
search work and its outcome. We outline the results from a high-level perspective
and then go in-depth through the definition and explanation of each part of the ap-
proach. We depict in each section the necessary specifications, however for an easier
understanding of the approach in this chapter, we only provide brief specification
and cover application details and information in the chapter 5 (case study), through
an example. In the last section of the chapter we point out also known limitations
of our proposed approach and also discuss them later in chapter 7 (conclusions and
discussion).

5. Case Study : In this chapter we demonstrate the most important concepts of the
proposed approach through an example. This aims to give the audience a more con-
crete understanding of the approach and its characteristics that were described in the
previous chapter. In the given example we omit some technical and implementation
details in order to better focus on the fundamental aspects of the approach, therefore
keeping the scope of this chapter as clear as possible for audiences with a different
level of technical understanding and backgrounds.

6. Evaluation and Results : In chapter 6 we present the evaluation process and the
results achieved by our work. The evaluation process covers three phases. The first
one is the qualitative evaluation phase, in which the aim was to gain general feedback

10 CHAPTER 1. INTRODUCTION

and conclusions about overall performance criteria for our proposed approach. The
second phase is the qualitative evaluation. This was done with the goal of assessing
the applicability of the (semi-)automated generation of the CMS based on ready-
made templates. The focus of this phase was the evaluation of the concept and the
related tools. Finally, an assessment of the overall approach according to evaluation
criteria from related studies and works is presented. This is done for the purpose of
comparing our approach with similar other approaches in the same domain (where
applicable). The focus of this part is to distinguish on a theoretical level the cases,
where the methodology would be beneficial and under which circumstances, regarding
the stakeholder's needs and requirements.

7. Conclusions and Discussion: In the last chapter we conclude with a summarization
of the work, its outcome and the results. We highlight once again the definition of the
problems that this thesis has dealt with and recapitulate the main achieved principles
and solutions. We briefly describe the most important conclusions achieved through
this work. Further, we discuss some aspects of the proposed approach with regards to
their strengths and weaknesses and give some rationale behind these facts. Finally,
we discuss here some proposal and inspirative questions for future works in the area
of Web engineering and related model-driven methodologies development.

1.9 Textual Notations

For the purpose of distinguishing regular text from important notations and definitions
and in order to give a clear context to the meaning of some sentences and terminology, we
describe below some typographical conventions that are used throughout the text of this
thesis:

• To distinguish the definition of an important term from its normal usage in text, the
term is written using bold fonts.

Example:

As defined by Kappel et al. a Web application is a software system that
provides Web specific resources (such as content, or other services) through a
user interface, typically as a Web browser.

• To highlight the focus to a term within a sentence we have used italic fonts. Italic
fonts are also used to distinguish foreign terminology.

Examples:

Little emphasis has been put to the end-to-end process of what it means to

1.9. TEXTUAL NOTATIONS 11

create such types of Web applications.

Complexity of software systems has become de facto an indispensable issue that
engineers have to deal with from the early stages of the software development
life cycle.

• Code snippets (including pseudo-code), are written using the special Consolas type
font.

Example:

"UL"
"class" => "custom-menu"
"id" => "cm"
"content" => "DuplicateRemove"
"LI"

"data-action" => "rem"
"content" => "Remove"

• Examples, exact mentions from a referenced source and non-literal meaning of nota-
tions are quoted inside double quotation marks (“”).

Examples:

Although WebML has been relatively long in the scene of research and devel-
opment of modeling Web applications it still lacks support for some important
concepts, for example “user interfaces”.

Our motto is: “Deliver an unforgettable event of your life.”

It is important that everybody “speaks the same language”.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter we outline some basic theoretical concepts and areas from the Web engi-
neering domain that are necessary for a proper understanding of this research. We explore
these background areas from several perspectives, in order to give a broader overview of
the relevant concepts and the related literature.

2.1 Web Engineering Framework

As it was discussed in the introduction chapter, the complexity of Web applications in
the commercial field has grown dramatically through time. In the beginning of the new
millenium, Web was still mainly in the form of static documents that were created and
maintained manually. Through time it became more interactive. Later, workflow-based,
collaborative, and transactional Web applications were introduced and in the last few years,
social, semantic and device-specific characteristics of Web started to grow. Each of these
properties and characteristics has basically impacted the way Web applications are created
and used. In order to put such a large area of research under a formal perspective, we have
chosen the systematic framework of Web engineering projects development, defined by
Kappel et al. [26]. This framework is one of the most comprehensive and widely accepted
from the Web engineering community. According to this study the Web engineering (as a
discipline) can be organized into these three main pillars: approach, product development
and quality, each of them containing several sub-areas, see figure 2.1 (page 15) for a full
picture.

Our study has focused on improving the state-of-the-art situation in some aspects of
the following areas of the Web engineering discipline: processes, requirements, modeling
and usability. For the scope of this research these areas have been chosen, because our
main aim is to propose a methodology for general usage in practice and these areas are
those with the highest potential benefits in the successful adoption of the methodology in
real-world projects. The other areas, while also important and fundamental for the proper
systematic development of a project, are not of a direct concern in our research and the
proposed approach.

13

14 CHAPTER 2. BACKGROUND

2.2 Web Application Characteristics

By definition a Web application is a software system that provides Web specific resources
(such as content and other services) through a user interface, typically a Web browser [26].
The reference to the term Web application throughout this thesis corresponds to this
definition as well.

Web applications have several characteristics and perspectives from which one can look
into them. Categorization of these characteristics is done into the following four groups,
following the ISO/IEC 9126-1 standard for the evaluation of software quality [24]:

Product-related characteristics: these are considered the main building blocks of
every Web application. Namely, the product-related characteristics include: content,
navigation (also denoted in literature as hypertext), structure and presentation. Each
of these blocks is considered from a static as well as behavioral (dynamic) perspective.

Usage-related characteristics: these characteristics cover the social (user-centric),
technical and physical context of the Web application. Under the social aspect we
consider the cultural background of the end users of the application. The technical
aspect deals with the technological properties (software and hardware) of the devices
involved in providing of the access to the Web application. The physical context
concerns time and location parameters of the application.

Development-related characteristics: from a development perspective Web ap-
plications involve several characteristics related to the resources that are necessary
for its creation and operation. These are factors involving people (development),
infrastructure, process and any possible integration with existing system.

Evolution-related characteristics: evolution is a dimension that goes across all
three above-mentioned groups of characteristics. This is an attribute that comes due
to conditions and requirements of Web applications that involve continuous change
of requirements, a fast pace of development and a high level of pressure in terms of
time-to-market necessity.

From an architectural standpoint a Web application can be composed in various ways.
Usually, the way the architecture is built, is affected by the purpose of the application and
its performance parameters, regarding its reliability and scale. A comprehensive study of
the applicable architectures in a Web application is discussed by Eichinger in the “Web
Application Architectures” chapter in Kappel et al. [26]. However, for simplification pur-
poses we have defined in figure 2.2 a typical architecture, which is commonly applicable
for most types of Web applications in general and content-based Web applications in par-
ticular. The methodology and tools discussed later in this thesis will also conform to this
architecture.

2.2. WEB APPLICATION CHARACTERISTICS 15

Figure 2.1: Highlighted areas of Web engineering framework, by Kappel et al., affected by
this research

Figure 2.2: A typical architecture for Web applications

16 CHAPTER 2. BACKGROUND

2.3 Web Application Types

Based on their attributes and previously mentioned characteristics, Web applications can
be categorized into several groups. This categorization has been a subject of several studies
and surveys [13, 40], which have achieved quite similar conclusions. The categorization
looks at the properties of the Web applications from a time versus complexity perspective,
see figure 2.3 [26].

Figure 2.3: Categorization of Web applications

As it was described in the introduction chapter, this thesis focuses on the domain of
Content-based Web applications. A content-based Web application is an online application
that enables creation, publication and administration of Web pages through a central
interface, usually labeled as a content management system (CMS). By this definition and
taking in consideration the product-related characteristics described previously, it is clear

2.4. WEB APPLICATION DEVELOPMENT PROCESS 17

that such type of application is an intersection of more Web application groups. This is
because any type of Web application has a presentation part that shows some content.
The differences consist in the degree of complexity of this content and the resources that
are used to generate and maintain this content. In the research phases we have given
particularly focus to the fact that more types of applications are covered in the application
of methodology and tools involved, hence making the results and conclusions as much
general as possible. Assumption and limitations are also pointed out accordingly.

2.4 Web Application Development Process

The process under which the Web application is developed is of extreme importance. From
a development process perspective, the Web engineering discipline has learned from clas-
sical software development. General best practices in applied processes to the classical
software development have been adapted for the specific needs of Web applications, since
several ago [56]. Processes are usually formalized and they have a specific set of steps that
needs to be followed in order to produce the outcome. However, empirical studies show that
development time of a Web application is usually short and in cycles [31]. For this reason,
heavily formalized processes are usually not appropriate in practice as they increase the
overhead and required resources for completing a project successfully. In the modern era of
Web development, processes tend to be iterative and agile, in order to support adaptivity
and changes. This has proven to deliver good results in practice [41].

Therefore our proposed approach, methodology and its supporting tools have been
developed to allow and support agile techniques and quick iterative development, as one
of the key performance factors for a successful execution of the Web project.

2.5 Requirements

Requirements are also a critical activity for the creation of a Web application, mainly
because they define the final outcome and also set up the criteria for its success. Require-
ments definition is a complex activity, because it involves human input. This leaves room
for ambiguity, incompleteness and errors. There is a large “gap” in communication between
stakeholders with a different background, typically technical versus non-technical. Usually
non-technical stakeholders (business people) are the project owners and sponsors, while
technical stakeholders (IT people) are responsible for the project's execution and realiza-
tion. Even though several methodologies exist for requirement gathering and engineering,
practice shows that the current processes in the Web engineering domain are insufficient
[4, 36]. Bad requirement definition leads to increased costs and overall excessive overhead
in the later phases of the project.

From a classification point of view requirements can relate to any of the areas of the Web
application, for example they can involve “technical aspects”, “architecture”, “security”
etc. Regardless of the type, however, the process behind requirement definition, evaluation

18 CHAPTER 2. BACKGROUND

and implementation is crucial. Our research focuses on improving the definition process of
explicit requirements related to the Web application. The most important factor for the
successful management of requirements is an effective communication and understanding
by all the involved parties. It is important to minimize the “gap” that exists between
two or more parties that deal with different aspects of the same thing [54]. The two main
principles in achieving this are: 1) communication on the same level of abstraction and
sharing of the same context between the involved parties, and 2) iterative approach of
requirement definition and execution. Our approach is based on these two principles as it
is highlighted in chapter 4 (a two-way metamodeling approach).

2.6 Modeling in Web Engineering

The history of the classical software engineering discipline has shown that ad-hoc develop-
ment of applications is bad in practice [8]. Web engineering is a newer discipline than that
of developing classical software; therefore the application of modeling principles in Web
projects is still not as wide-spread. Capturing concepts by means of models, however, is
something that should be fundamental for the achievement of successful and long-lasting
Web applications.

Several initiatives have emerged in the past years that focus on modeling specific con-
cepts of Web applications [A.8, 34]. They define methodologies and tools usually based on
a domain-specific approach for the Web as opposed to using standards, such as UML. This,
however, leads to a high cost and effort of adoption in practice. On the other hand general-
purpose approaches are easier to adopt but they lack the strength and expressiveness of
a domain-specific one. Therefore, typically some superstructural concepts are added on
top of the basic ones, leading again to increased costs and effort for practical applications.
Several of the model-driven Web engineering methodologies have been discontinued. Some
serve only as a technical reference. Just a few have been used in practice, mostly in the
academic area or in large-scale companies that can afford to support experimental research
and development. We outline some relevant modeling approaches and languages in chapter
3 (state of the art and related work).

Our approach is fundamentally based on the principle of modeling, which has been
applied since the early stages of the research. We aim to use seamless transformation
between models following a natural process, based on practical experience. Artefacts that
are integral part of a Web project, namely interactive prototypes and a meta-model, based
on the most common content-based Web platforms, are the two basic parts of the proposed
methodology as will be described in the main part of the thesis.

2.7 Usability of Web Applications

Considering the quality aspect of the Web engineering discipline, usability is a crucial
parameter that impacts the ability of a user to complete his goals. Usability is defined as

2.7. USABILITY OF WEB APPLICATIONS 19

the ease of use and learnability of a product, in our case, the Web application. The three
main criteria of the usability are: efficiency, effectiveness and satisfaction. These criteria
have been analyzed and specified in more detail in several studies [35, 47]. Several studies
have shown that a big amount of productive time a user spends with the Web application
is lost due to usability reasons [30].

One important factor that distinguishes Web applications from the classical software
is that you cannot train the users of the Web application. Web applications are delivered
and used remotely, they are not sold in boxes that come with a manual for the reader.
Moreover, learning a new system is an effort that nowadays everybody tries to reduce or
overcome, so even if some instructions are given, they need to be simple, brief and easy
to remember. The right principle to approach this thought is to build applications that
require as little as possible learning of a new system, i.e. they are heavily based on the
users intuition and expectations. It is best practice to build applications in the way that
users think and react and to allow them to achieve the tasks they are trying to complete
with a minimal effort.

Usability is usually considered a metric of the final product. But usability is something
that affects also the process behind Web application development and maintenance. In our
study we consider usability as one of the important factors determining the application of
the methodology in practice therefore the methodology has been designed to achieve a
high degree of usability in practice. As is explained later and was backed up by the
quantitative evaluation data, the proposed methodology follows a natural processes for
the administration of the Web application and it is comprehensible and easy to apply in
practice without the need of a long learning curve, or past experience with the involved
technical concepts.

20 CHAPTER 2. BACKGROUND

Chapter 3

State of the Art and Related Work

Many researchers are working on the Web engineering discipline by approaching Web ap-
plication development from a model-driven perspective. We outline here the most relevant
ones for our work. This chapter gives also comprehensive answers to the research ques-
tions Q1 and Q2 and a partial answer to question Q3 (which is addressed again later in
chapter 7, conclusions and discussion).

3.1 Web Modeling Language

Ceri et al. describe the Web Modeling Language (WebML) in [10]. It is a notation language
for dealing with the definition and specification of Web applications on a conceptual level.
WebML consists of seven phases: requirements specification, data design, hypertext design,
architecture design, implementation, testing and evaluation, maintenance and evolution.
These phases conform to the Web engineering discipline principles discussed in the previous
chapter. The method is supported by WebRatio [21], which is a tool that provides modeling
and generation of Web applications by means of the WebML. WebRatio is still actively
being developed, but it is commercial, so it disables the possibility for its extension and
usage from the open-source community of developers and a more transparent understanding
of the involved concepts.

One of the main differences between the WebML and our methodology is that WebML
uses separate models for different aspect and phases of the Web project. Specifically it uses
models for the data, hypertext, and presentation aspects, see figure 3.1 [49]. Moreover for
the presentation aspect it does not introduce any specific notation for its expression in the
conceptual level, which would be specific for the methodology.

Although WebML has been relatively long in the scene of research and development
of modeling Web applications [9] it still lacks support for some important concepts, for
example “user interfaces” [58].

21

22 CHAPTER 3. STATE OF THE ART AND RELATED WORK

Figure 3.1: Examples of WebML: a) data model, b) hypertext model, c) process model

3.2 Unified Modeling Language

The Unified Modeling Language (UML) is a general-purpose language that is commonly
used for analysing, modeling and implementing different systems and processes in software
engineering [51]. UML is quite fully-fledged and flexible, however this same fact impacts
also its applicability in the Web engineering discipline. Models in UML are typically
informal and they require the user to have deeper understanding of the domain. Moreover,
UML lacks any formality in its semantics and implementation rules, which makes it harder
to transform UML-based instance models into functional assets.

Models in UML are represented by one, or more diagrams. These diagrams can repre-
sent two types of views or representation of the system, namely structural or behavioral,
see figure 3.2 [52]. Structural diagrams focus on describing a static structure of the system
using objects, attributes, operations and relationships. Behavioral diagrams show a dy-
namic representation of that system in terms of collaboration and changes based on time
and other impacting factors.

3.2. UNIFIED MODELING LANGUAGE 23

Figure 3.2: UML examples of: a) class diagram, b) communication diagram, c) use-case
diagram

Typically, domain-specific concepts are embodied into UML using some extension mech-
anisms. These mechanisms allow additional terminology to be provided on top of core UML
models. Grouping and implementation of a specific set of these extensions is represented by
a UML profile. The drawback of such approach is that the profiles are only additional and
they cannot modify existing UML core notations, without creating any their derivatives
first. This adds to the complexity and overhead of the approach, when applied in practice.

24 CHAPTER 3. STATE OF THE ART AND RELATED WORK

3.3 UML-based Web Engineering

Koch et al. describe a UML-based approach of modeling Web applications called UML-
based Web Engineering (UWE) [27]. UWE has been developed with the aim to provide a
modeling language, specific for the Web domain, based on UML. It consists of the notations
as well as a process to support the development of Web applications in general using a
model-driven approach, see figure 3.3 [50]. The most practical benefit of UWE, is that it
provides tools (MagicUWE, MagicDraw) that assist the stakeholders during the process of
model creation and modification. Some of these tools are automatic. MagicDraw [29] is a
commercial-licensed software used for modeling in UML-based notation different aspects
of software. MagicUWE [53] is a plugin for MagicDraw. Models developed in UWE are
usually simple and easy to understand but less efficient, when it comes to transformation
techniques, although automated generation of Web applications is also one of the goals of
UWE approach.

UWE follows an iterative and incremental approach for the development of Web ap-
plications. This approach, however, focuses mainly on customized and adaptive systems,
without dealing much with the content management activity therefore it is only related
with our research remotely, because it is also a model-driven approach. However, UWE
is open-source and it is highly driven by OMG standards [28]. This makes it a promising
candidate for a wider practical application in the future, once it achieves a certain maturity.

Figure 3.3: Overview of UWE models

3.4. CMS MODELING LANGUAGE 25

3.4 CMS Modeling Language

Saraiva et al. propose a graphical language for rapidly modeling Web sites. It is called CMS
Modeling Language [44]. The CMS Modeling Language (CMS-ML) is a graphical-oriented
language based on models for the high-level definition of CMS-based Web applications. It
aims to facilitate the view of the non-technical stakeholders to the Web application's model
as well as allow him to perform simple modifications of the model on a conceptual level.

The language consists of two levels: The first level is for the System Designer (technical
users), i.e. the CMS Intermediate Language (CMS-IL), which is a set of common low-
level concepts for the CMS platform. The second level is for the Business Designer (non-
technical user), i.e. the CMS Modeling Language and it provides a set of elements used to
quickly model a typical Web application. The model provided by the Business Designer is
transformed to the CMS-IL model and then refined and deployed by the System Designer.

CMS Modeling Language introduces several elements necessary for the creation of a
Web application. These elements are generic and are modified at the later phases of
the project in the form of a Web site template. Models of the language are based on
different conceptual models, which makes the communication between stakholders harder,
as compared to our proposed approach. Figure 3.4 [44] shows the levels under which the
language and its elements operate (see page 26).

3.5 Web Engineering Method

Souer et al. present the Web Engineering Method (WEM), which is a method covering
specification, design, implementation and maintenance of CBWA [48]. The method focuses
on reducing the “gap” between the business requirements and the resulting Web applica-
tion's artefacts by reducing the complexity of the application's model. Similar to other
related methodologies WEM enables the non-technical stakeholder to make configuration
of the application with little or no need of intervention from the technical stakeholder
using both abstract and concrete (specific) syntax notations, depending on the stage of
the project. The concrete syntax is used for a representation model on the instance level,
while the abstract one corresponds to the implementation model and its formalization as
a domain model level, see figure 3.5 [48] (page 27).

WEM consists of a modeling tool for the automated configuration of the CMS. The
CMS itself is not produced, however. The approach combines principles of some existing
methods and enriches them by an abstract and concrete syntax based on a domain model
and end-user analysis. As a result it promises to reduce the complexity of implementation
of the Web application. The structure and elements of WEM are rather complicated,
leading to a higher effort for its adoption in practice. Also its interoperability with general
purpose Web-based languages is limited making the transformation part harder. However,
some evaluation projects have been carried on using WEM and the results presented are
also promising.

26 CHAPTER 3. STATE OF THE ART AND RELATED WORK

Figure 3.4: Abstraction levels and involved user roles in CMS-ML

3.5. WEB ENGINEERING METHOD 27

Figure 3.5: Approach overview and abstraction levels of WEM

28 CHAPTER 3. STATE OF THE ART AND RELATED WORK

3.6 Other Model-driven Approaches in Web Engi-

neering

Other less well-known, model-driven approaches in Web engineering include OOHDM [45],
OOWS [39], WebDSL [14] and a few others [A.8]. Most of these approaches are discontinued
for several years already, or they are not directly related with work from our research,
therefore we have only included them in the references for the audience to study, where
appropriate. Below we show a diagrammatic representation of chronology in which the
mentioned approaches and languages have been created, see figure 3.6. The size of the boxes
in the chart represents the approach's “reputation” in the Web engineering community.

Figure 3.6: Chronology and maturity of related approaches

3.7 Survey on Practical Application of Related Works

The previously described approaches have been analyzed and evaluated in several studies
[A.8, 58]. The main drawback is in the limited support of already standardized Web appli-

3.7. SURVEY ON PRACTICAL APPLICATION OF RELATED WORKS 29

cations concepts that are commonly used in Web projects and that are developed without
following any formal methodology or process. This leads to a considerable “gap” between
the modeling concepts and the technologies required to support their implementation in
practice. Following up on this fact we conducted an informal survey with peers outside
the academic area to evaluate the real-world situation. A total of twenty respondents from
Web development community in the Czech republic (involved in real-world projects with
several agencies) were asked to answer three questions for each chosen modeling approach
described above. The questions investigated, whether the subjects knew the approach and,
whether they had applied or used them before in some projects.

Table 3.1: Survey results about some MDD-approaches

Approach Knowledge Application

Web Modeling Language 5 0

Unified Modeling Language 18 4

UML-based Web Engineering 3 0

CMS Modeling Language 1 0

Web Engineering Method 0 0

Others (OOHDM, OOWS, WebDSL) 2 0

The results confirm that the previously discussed approaches are rather academic and
they have not yet widely been applied in the commercial field, see table 3.1. With regards
to application in practice only UML has had some real-world application with 20% of re-
spondents giving a positive answer to this question. The other approaches had no practical
involvement whatsoever. Although, with regards to knowledge about these methodologies
and their tools, the situation is better. UML is the most well-known language in Web
engineering related projects with 90% of the respondents giving a positive answer to that
question. Other languages and approaches are considerably less well-known. However,
the purpose of this survey is not to give a statistical conclusion of the popularity of the
related works, but rather a general idea about their application in real-world projects.
Therefore we do not argue about the numbers being different in another country, or envi-
ronment, especially in the countries from which the approaches have originated and where
the development community of these approaches is more active.

30 CHAPTER 3. STATE OF THE ART AND RELATED WORK

Chapter 4

A Two-way Metamodeling Approach

The main result of this research is the proposal of a two-way metamodel-based approach in
Web engineering for the (semi-)automated creation of the content-based Web applications.
The approach consists of three parts:

The first part concerns the requirements-gathering phase. We propose the usage of a
presentation prototype as the conceptual model of the CBWA in order to facilitate effective
communication between technical and non-technical stakeholders during the preparation
and finalization of functional requirements (bottom-up phase). In most cases this presen-
tation prototype is represented in Hypertext Markup Language (HTML), but it can be
practically any arbitrary interactive prototype representing the final Web application (for
example wireframes exported in the XML format, or any other parsable language).

The second part deals with the application logic, more specifically in the case of a
CBWA with the CMS. We propose a simplified metamodel and a technique for generating
the CMS automatically by parsing the HTML prototype, which was the output of the first
phase (requirement gathering). We achieve this by using some predefined heuristic rules
and reverse engineering principles coming as a result of analyzing common CMS solutions
and real-world projects (top-down phase).

The third part deals with the administration of content in the future, more specifically
with the effectivity and usability of this process. We propose the usage of the Web ap-
plication's presentation as the CMS interface for the most common operations of content
administration such as duplication, removal and editing of content assets.

4.1 Prototyping the Presentation as a Conceptual

Model

The requirements-gathering and specification phase involves communication between tech-
nical and non-technical users. Practice shows that non-technical users relate more to the
Web application's visual presentation, while the technical users think more in terms of
functionalities and their programmatic representation. This fact has inspired us to find a
solution that would bring these two concepts as close together as possible. In figure 4.1

31

32 CHAPTER 4. A TWO-WAY METAMODELING APPROACH

(page 33) we show in a schematic way the principle of our proposed approach, as opposed
to the typical one in Web engineering.

It is standard in Web engineering projects to prepare a prototype of the final Web
application at a certain point in time. The abstraction level of this prototype is relatively
low as it resembles maximally the final output and it decreases through time, with later
iterations. The fidelity (level of detail) of the initial prototype in practice is arbitrary
and it ranges from very low, when prototyping tools such as wireframes are used, to very
high, when pixel-perfect graphics are embedded and the prototype is in the form of HTML
templates. We propose to use the HTML prototype as the conceptual model for the
requirements-gathering and specification phase. More precisely, in terms of MDD, this
HTML prototype serves as the hypertext and presentation model of the Web application.
The hypertext model describes the structure and the presentation model describes the
interfaces and layout of the Web application. The content model representing the data
is automatically generated and modified through time, as we will describe in the latter
chapters of this thesis.

The HTML prototype is usually developed by the technical user. It represents the final
product but does not contain yet real data (content) and it is not yet complete. However, it
is not a temporary product, as would be a conceptual model prepared in a domain-specific
language, or UML just for the need of communication between the non-technical and tech-
nical user. In practice, non-technical users that deal with Web engineering projects have a
considerable understanding of HTML language and other related technologies behind the
creation of the Web application's prototype. This maximally reduces the “gap” between
the involved parties and in certain cases enables the non-technical user to directly modify
the prototype to fit his conceptual model.

The HTML prototype is easy to create and cheap to modify, therefore it supports
agile and iterative development methodologies. The iterative approach allows a gradual
clarification of stakeholder's needs. Through iterations the stakeholders are able to specify
and finalize functional requirements. Non-functional requirements can be covered by other
means that are appropriate for the given project. Usually, however, because Web-related
requirements are not very formal they can be also represented through a prototype (at
least partially). The cost of adoption and application of this method in practice is minimal,
because it does not involve introduction of a new language, framework or other concepts
for the purpose of the requirement gathering and finalization phase.

4.1. PROTOTYPING THE PRESENTATION AS A CONCEPTUAL MODEL 33

Figure 4.1: The classical process of Web application development (above) vs. our proposed
one (below).

34 CHAPTER 4. A TWO-WAY METAMODELING APPROACH

4.2 A Generic Metamodel for Content-based Web

Applications

As the second part of the approach, to support the above-mentioned methodology, we
have designed a metamodel of the CMS that enables transformation of the presentation
prototype into the resulting Web application. It is important to clarify that the Web
application is represented by the underlying CMS including the initial content that is part
of the input conceptual model, although incomplete. The main advantage of this is that
the resulting CBWA representation is custom-made for the current project and it contains
only concepts and assets that are relevant for that project. Moreover, time and overhead
required for creating the CMS from ready-made solutions such as for example Wordpress
[57], Drupal [7, 15], Joomla [25, 46] etc. and its modification for the project-related assets
is minimized. Another benefit also comes from the fact that the conceptual model in the
previous phase is a common one for both technical and non-technical users and the level of
its abstraction is more near to the actual CBWA representation, see figure 4.1 (page 33).

For the modeling part of the CMS we have based our work on the CMS common
metamodel, proposed by Trias et al. [20]. The CMS common metamodel has been defined
after analyzing three of the most popular open-source CMS platforms available in the
market, namely: Drupal, Wordpress and Joomla. The resulting metamodel is a union of
the metamodels of each of the previously mentioned CMS platforms. The approach chosen
by the authors leads to a generic view of the CMS-based Web applications domain.

For the purpose of our research, which focuses in the application of the methodology for
content-based Web applications, we have proposed and implemented several modifications
leading to a simplified variation of this metamodel. See figure 4.2 for a simplified, high-level
presentation of the metamodel's packages and main components. Our proposal is a result
of a three-phase process. In the first phase we have analyzed the CMS common metamodel
and its characteristics. The aim of this phase was to understand the holistic view of the
CMS-based Web applications modeling in general. In the second phase we analyzed some
selected real-world projects that use one of the CMS platforms mentioned above to compare
the theoretical and practical usage of the model's components. We focused on both the
methodology and the technical aspects of these projects. In the third phase we applied
some reverse engineering principles to design the simplified variant of the CMS metamodel
and fine-tuned it through several iterations during the application of the model concepts
into the corresponding tools, discussed in the latter chapters of this thesis.

The metamodel consists of three packages: navigation, user and content. These pack-
ages are based on the categorization of Web-related characteristics and their modeling,
which was discussed in the previous chapter. The components of our proposed metamodel
are: pages, templates, regions, content, user and function packages. This is the minimum
set of components that we need to capture the system's structure and behaviour.

The core component of the model is the page, which represents the actual pages of the
Web application, be they of any type. A page is identified by a unique string, representing
the URL address, from which it can be retrieved. The page is always constructed by a

4.2. A GENERIC METAMODEL FOR CONTENT-BASED WEB APPLICATIONS 35

Figure 4.2: Simplified view of main components of the proposed metamodel

36 CHAPTER 4. A TWO-WAY METAMODELING APPROACH

template, which represents the page's layout, i.e. the hierarchy and arrangement of the
elements from which the page consists. Elements are considered logical page blocks, for
example a page's menu, carousel of images etc. These elements are denoted as the regions
of that page. Regions are distinct areas that do not overlap with each other. They contain
selected pieces of the page's content, but they can also contain other smaller regions.
Content is the “atomic” part of a page that consists of one or more HTML tags, which
are later created and maintained in the CMS. The user is another central component of
the system and it represents any users of the Web application. The user is the only actor
of the system (from the UML context), i.e. in the model we do not distinguish the users
by their roles. Users can create functional packages, which are regions that contain certain
application logic, for example dynamic forms. Functional packages are predefined pieces of
application logic. They are not automatically generated, although their content can also
be modified.

This view of the metamodel is enough expressive but also generic to cover most projects
in the domain of CBWA, as it was later proven during the evaluation phase. It is important
to notice here the distinction between a model-level and a metamodel-level based approach.
A metamodel is a higher level model of the system's components, which is the approach
that we are using. Typically, models of a CMS deal with some semantics of that system,
involving concepts such as images, comments, articles etc. On a higher level though, all
these concepts can be generalized and they are covered in our case by concepts such as
content, regions etc. Reaching this level of abstraction requires a more generic definition
of the related metaclasses and attributes but also gives wider application possibilities.
Therefore it is crucial to keep these conclusions in mind when approaching the latter top-
down phases.

As an output, the concepts involved in our model are represented by UML metaclasses.
UML is a MOF-compliant language, which ensures for the models establishment under the
OMG's approach and their standards. The metaclasses describe the underlying concepts
without any context-related information about their way of presentation, which leads to
an enough robust definition.

4.3 Semi-automated Generation of the Web Applica-

tion

At a certain point of time the HTML prototype is considered as final by the involved
stakeholders. We propose a technique and a supporting tool (parser) that enable the
generation of the underlying CMS for the Web application (semi-)automatically from this
final HTML prototype. (Semi-)automatic means that partially the output is generated
automatically, but in some specific cases some manual intervention is required.

The interactive prototype is a folder containing static files in HTML, JavaScript, Cas-
cading Style Sheets (CSS) files, images and eventually subfolders, in which those files are
located. This folder is processed by the parser in several steps based on an algorithm, see

4.3. SEMI-AUTOMATED GENERATION OF THE WEB APPLICATION 37

figure 4.4 (page 39).

Figure 4.3: Scheme of semi-automated generation of CMS

Each of the HTML input files represents a page-type of the Web application, for example
“homepage”, “categories”, “product page” etc. This is a necessary convention for the
application of the proposed technique, however, this is not very limiting, because it is
quite a standard procedure in real-world projects. Once the input prototype has been
processed, the parser generates a temporary file for each page-type in the JavaScript Object
Notation (JSON) format. The JSON file contains a presentation of the Document Object
Model (DOM) tree of the input HTML files and it facilitates the parsing and application
of predefined heuristic rules for the generation of the CMS. For each JSON file a template
and a page is generated. If the input prototype contains several pages of the same type,
they are also generated and applied the same template. Templates are composed by several
logical content blocks, as described previously, i.e. regions. Technically, the regions are
identified by the type of content (HTML tags) of which they consist. For example a region
of text is distinguished (and separated) from a contact form region, by identifying the
closing <div> tag of the text region from the opening <form> or opening heading <h> tag
of the contact form. Regions and contents are assigned a unique identifier through which
they are later recognized and accessed for modifications, see figure 4.5 (page 40). Identical
regions in the files are stored only once. These are repetitive HTML parts of all pages,
such as typically the header and footer regions. This is where we apply the heuristic rules,
while comparing two pieces of the JSON file, because not always these parts are identical,
for example an active element of the menu is highlighted in one page while another one in
another page, although the menu is the same element in both pages.

Content blocks, or regions, within one page are considered as assets for the CMS, i.e.
the user can create another identical sibling of that asset with the same properties and

38 CHAPTER 4. A TWO-WAY METAMODELING APPROACH

attributes. He can remove or modify existing ones. Modification options vary based on
the type of content (see the next section for the use-case diagrams).

The result of the parser is a representation of the Web application consisting of three
types of output. The first are static files such as HTML snippets, CSS, JavaScript and
media (typically imagery). They are placed in the server and referenced from the corre-
sponding content elements of the pages. The second type of output files are server-side
scripts representing the application logic needed to view and manipulate with the pages,
both from an interaction perspective and also from an administration perspective (see
next section). It is important to understand that the programmatic logic of the server-side
script is also static and not derived from the input prototype. However, parts of it are
modified based on the prototype contents. The third kind of output is a script with the
database structure and data of the CBWA, with which the server-side scripts will operate.
In our case for the proof of concept, we have used a Relational Database Management
System (RDBMS), namely MySQL, however the technology does not have any impact on
the principles that are applied and theoretically any other technology can be used.

At this moment, the outputs are only produced but they need to be processed manually
in order to be integrated into the server, because the development is for the purpose of
proof-of-concept scope. An integration with the server would be highly encouraged as it
would increase effectivity but it is quite a complex problem itself due to several architectural
possibilities of the server.

4.3. SEMI-AUTOMATED GENERATION OF THE WEB APPLICATION 39

Figure 4.4: Algorithm for parsing the input HTML prototype

40 CHAPTER 4. A TWO-WAY METAMODELING APPROACH

Figure 4.5: Parsing demonstration from part of a page

4.4. ADMINISTRATION OF THE CONTENT 41

4.4 Administration of the Content

Typically a separate interface for the creation and modification of assets, is commonly used
in practice. This is partially due to conventions and partially due to the usually top-down
modeling approach discussed earlier. Both these reasons are inter-related. Conventionally,
when building a CMS, the developer creates a presentation part and an administration part
of the Web application. The presentation part is what the end-users see and corresponds
to the conceptual model of the non-technical stakeholder, specifically to what he wants
that application to present to the users. The administration part is what the users with
some “super-powers” see and corresponds more to the technical representation of the Web
application, involving concepts such as articles, themes, comments etc. All these concepts
are separated and distinct and their relation is usually shown through tables, see an example
in figure 4.6. Such presentation corresponds to the database structure of the system and
hence it is closer to the technical stakeholder's conceptual level.

Figure 4.6: An excerpt of a typical CMS administration interface

Based on our methodology and the way which the data assets of the CMS are created,

42 CHAPTER 4. A TWO-WAY METAMODELING APPROACH

stored and maintained, we propose the usage of the Web application presentation layer (its
Web pages) as an administration interface for the content. Using the presentation pages
as an administration interface brings several benefits. The rationale behind this is that the
presentation has the exact same structure and form as the mental model of the user, as we
described previously. Given that the presentation prototype was the initial model for the
requirements and the CMS assets are generated based on it and therefore conform to its
structure, it is much more effective to use this presentation as the administration interface.

As a proof of concept we have developed a tool to support this technique. It is an
extension for the Google Chrome Web browser. When the extension is enabled, the actual
presentation part of the Web application turns into administration mode and the Web
application assets can be modified by pointing the mouse to the content and right-clicking
for a contextual menu that offers a list of possible operations that can be performed with
that element. Of course, this can be limited to users with “super-powers” and be accessible
after login. Technically, the modifications are asynchronously propagated from the client's
browser to the CMS and stored in the server via Asynchronous JavaScript and XML
technique (AJAX). Below we will describe some more details about the specific options
and operations that this tool allows.

Once the tool is enabled for administration mode, the presentation will turn into the
CMS interface. The only difference is that according to the placement of the mouse cursor,
an element of the DOM will be highlighted for the user to distinguish that he can interact
with that element. An excerpt of the tool is shown in figure 5.6, in chapter 5 (page 54).
When the user chooses an element he wants to interact with, he can right-click on it and a
context-menu is generated based on that element's type. There are several use-cases from
which a user can choose. After choosing an item of the menu, the user can change that
element, i.e. modify its existence, content and/or appearance. These modifications are
temporarily stored locally in the Web browser first (i.e. in the rendered HTML and CSS
level). Then, when the user is ready to deploy the related content changes a JavaScript
file will match the modified elements unique identifiers and create accordingly Structured
Query Language (SQL) statements in order to persist the changes on the database level.

In figure 4.7 (page 44) we show the possible administration operations in the form of
a UML use-case diagram. These operations are available only for the user, who has been
identified as an administrator, therefore the login and browsing-related use-cases are not
included in this list. By right-clicking anywhere in the page, the user can select, whether he
wants to interact with the whole page, with the highlighted HTML element under cursor,
or a new HTML element. Below we are going to describe briefly the meaning for each
operation.

1. Interaction with the page. If the user chooses to interact with the page, he can delete
that page, or duplicate it (create an exact same clone). Deleting the page, removes
it from totally from the CMS, including its related assets, namely the regions and
content. Duplication creates an identical sibling of that page, with same asset and
content data (i.e. page structure) but with a different URL address, depending on
the page's title.

4.4. ADMINISTRATION OF THE CONTENT 43

2. Interaction with an existing element. Interaction with an existing HTML element is
the most common operation that users will make. Similarly as with the whole page,
he can delete it, i.e. remove it from the page's structure, or clone it, i.e. create a clone
of that element. In case the element is duplicated, it is assigned the same content
value and other attributes as the original. Also it is assigned under the same parenting
element and container. Typically the user will duplicate an existing element and then
modify its values accordingly. Modification of the element is possible explicitly, i.e.
by directly editing its HTML, JS or CSS content attributes and data, which is more
appropriate for a technical user. But it is also possible to modify most commonly
used attributes, for example for a <div> block element that contains just text, it is
possible to modify just its text directly.

3. Interaction with a new element . Similarly as in duplication of an existing element,
the user can also append to the page a new empty element. This is possible by
writing custom code, or by choosing one of the most predefined elements such as
headlines, text blocks, or images.

As was proven later in the evaluation phase these use-cases are just enough to provide
the most common operation for the administration of content via the CMS. They basically
allow the user to access any element of the page regarding its context from the presentation
view, which makes it much easier for the orientation. This technique is very beneficial to the
users, because it reduces the learning curve of operating with a new system, increasing the
efficiency of work and most importantly improving the overall usability and user perception
of the Web application [A.6, A.2].

44 CHAPTER 4. A TWO-WAY METAMODELING APPROACH

Figure 4.7: Use-case diagram of the administration operations

4.5. LIMITATIONS 45

4.5 Limitations

Our proposed approach, the related methodology and tools have certain limitations. In
this section we are going to mention these limitations and give some rationale about their
impact in practice.

The first limitation comes from the fact that the approach is specialized and fine-tuned
for the family of content-based Web applications. This is a hard limitation that cannot be
overcome through iterations or improvements of the methodology or tools. Reasoning from
this fact, we could say that the approach is not directly applicable for Web applications
that consist of heavy business logic, such as portal-based Web applications, or social-
based applications etc. However, the majority of Web applications have at least a small
presentation part that consists of user generated content, therefore the approach can be
partially applied to this part. Of course, the larger the part, the more beneficial is the
application of our proposed principles. On the other side, Web applications that heavily
rely on content, such as Wiki pages, presentation websites etc. can gain a much higher
level of benefit from this approach.

The second limitation relates with the first one and it is regarding the integration
of application logic to a content-based Web application, for example a contact form, or
newsletter registration etc. These are common operations that require creation of some
dynamic assets. To overcome this limitation, the proposed metamodel contains the Func-
tion package. Function package allows integration of programmatically generated content
into the system. It requires of course some technical knowledge (database versus scripts
integration etc.) and is a task that must be performed by the technical stakeholder. In
practice, common CMS solutions allow such functionality to be integrated also automati-
cally from the non-technical user through the installation of a predefined package via the
administration interface. Of course, such approach is possible in our case as well. Several
packages from the repository of common CMS solutions can be installed and integrated
easily into the database and they require little modification of the scripting language. A fu-
ture optimization of this process by creation of a repository custom-made for the proposed
methodology would be beneficial.

The last limitation that we are aware of, is the need for manual intervention for some
parts of the methodology. This limitation is two-fold. Firstly is comes due to the very
complex and fully-fledged nature of Web applications nowadays, which makes it almost
impossible to prepare a “silver-bullet” solution that would fit for all applications. Secondly,
the prepared supporting tools are for the proof-of-concept scope. Their further development
can improve the automatization process, which would increase more practical application
and feedback from the community. This would make the methodology and tools more
robust and applicable to a wider range of situations and projects.

46 CHAPTER 4. A TWO-WAY METAMODELING APPROACH

Chapter 5

Case Study

For a better understanding of how the proposed approach can be applied in a Web project
we describe in this chapter a case study to demonstrate the most important concepts.
This is a small-size project, which is based on a real-world scenario and conclusions. For
simplicity reasons and better demonstration of the most important factors, some execution
details have been omitted and simplified in order to highlight only the most important
aspects of the approach.

We consider a project of an event planning company, which wants to create a new web-
site for their services. There is one representative of the company, with limited technical
knowledge, who is responsible for the project. He has hired one technical person to carry
on the project with him. The aim is to keep project costs as low ass possible, because the
company is just starting and their funds are limited. However, the company's representa-
tives are aware that an online presence is very important to their business and therefore
they want to keep the website neat, modern and flexible for future development.

5.1 Requirements and Prototype

The company's representative has made a research of the current situation in the field of
event planning, in order to best understand the competition and the market. As a part of
this research, he has also analyzed the way that similar companies present their services
and products in the Web. Below is the initial list of his requirements:

1. Our company's website must be beautiful, modern and neat. It must communicate to
the visitor the core values that we follow in our company: creativity, professionalism,
friendliness.

2. Our motto is: “Deliver an unforgettable event of your life.”

3. Our customers are individuals, families and small businesses with up to 20-30 em-
ployees.

4. Our services include event-related planning and event organization end-to-end.

47

48 CHAPTER 5. CASE STUDY

5. We communicate with the customer from the beginning to understand their expec-
tations. Together we choose a theme for the event. Afterwards we provide creative
ideas based on that theme and arrange all related details for a perfect organization
of the event.

6. The website will consist of two parts, one with static information including description
of our core values, our services and our address and other contact details. The second
part will be dynamically updated by us and it will include changing information, such
as up-to-date, recent events and recommendations from our past customers.

7. We also need a contact form, through which our potential customers can contact us
directly, or they can leave us their email address/telephone number and a note and
we will contact them back.

8. A lot of our customers are busy professionals, who are always on the go, therefore
our website must be user-friendly and optimized also for mobile devices.

9. The key to marketing of our company will be our social media presence, so the website
must support the idea of our visitors and potential customers to give recommenda-
tions via our social channels.

As is seen in this case study, the set of requirements is a mixture of functional and
nonfunctional requirements. Requirements 1–5 contain high-level information that does
not directly impact the way that the prototype will be built. However they give a general
idea about what kind of website the owners are looking for. The rest of the requirements
are more concrete and they give enough understanding of the final deliverable expectations.
Overall this list of initial requirements is just enough specific to give a general idea of the
website's content.

Due to the generic overview of these requirements and the fact that the stakeholders
want to keep the cost of the project as low as possible, the technical person has looked
for and found a free website template that could be appropriate for the initial version of
the Web applications presentation, see figures 5.1 and 5.2 (page 50). Of course, it requires
several modifications, but it is usable, for an initial version of the website.

In the requirements gathering phase there is still room for changes in the prototype. One
of the questions that usually arises is, whether to make this changes within the prototype
or whether to make them after the CMS is generated and use the CMS to carry out
these changes. This is a decision that is usually done by the technical person. As a
rule of thumb, layout and structural changes, especially those requiring changes of the
HTML code are more convenient to be executed in the HTML prototype, in order to
avoid later modification manual intervention in the data model. A layout change may
be considered adding, removing, swapping the positions of certain elements, for example
putting the testimonials content block in the left and the recent events block to the right
side, see figure 5.2. Structural changes include taking of content blocks and copying or
moving them to another page, for example copying the content block with the three event

5.1. REQUIREMENTS AND PROTOTYPE 49

Figure 5.1: Structure and content of the initial HTML prototype

types (birthday, wedding and corporate events) into the page with the presentation of the
services. Changes of content (including imagery) and styles can be easily performed later
from the CMS without any problematic issues.

It is important to note here, that no temporary models (such as schematic represen-
tations of the websites structure, data models etc.) are created and the project members
can already communicate with each other very specifically about their concerns using the
HTML prototype. For a larger project, this technique is also applicable, except that the
resulting HTML prototype would be larger, consisting of more pages and components.
Logically the duration of this phase would also be longer, but no theoretical limitations
would be encountered, because any requirement at this phase would be in a certain form
represented in the actual prototype and fine-tuned later in several iterations. A second
important thing to highlight is that picking a ready-made HTML template for the initial
prototype is quite a common solution nowadays, especially in small projects with limited
budget. However, if no such limitations were present, it is still valid that in the early phases
of the project, a technical person would take care of the design of the Web application,
therefore delivering a custom-made template for the prototype. The designs are sometimes
made in the form of sketches and wireframes, which are also exportable into HTML docu-
ments, therefore the technique can also be applied in such case. Graphics can be embedded
later, either through later design iterations (which is more common in practice), or via the
CMS.

50 CHAPTER 5. CASE STUDY

Figure 5.2: Preview and content blocks of the homepage in the HTML prototype

5.2. GENERATING THE CMS FROM THE HTML PROTOTYPE 51

In figure 5.2 is shown a preview of one of the pages of the prototype, specifically the
homepage. The rest of the pages have a similar look and feel but consisting of different
content blocks.

5.2 Generating the CMS from the HTML prototype

After several iterations and modifications, the stakeholders have reached a final version of
the prototype and are ready to start preparing the real content. Given the visual-oriented
nature of the prototype, most concerns at this phase were related to the Web application's
look and feel. Such modifications can be handled also directly from the CMS, as described
previously.

Once the HTML prototype is ready, it can be used as an input for the (semi-)automated
generation of the corresponding CMS. This input is a folder with the structure and file
content as shown in figure 5.1. The folder consists of static files in HTML, CSS, Javascript
and some imagery that is part of the initial pages presentation. No dynamic (script) files
are included in the folder. This form of the HTML prototype is a typical artefact for any
Web project.

At this moment the folder is parsed by the scripts that were discussed in the previous
chapter. These scripts consist of dynamic server-side files in PHP. The script can be run
in a local or remote server. For this project the scripts were run locally.

The script will first arrange the input files depending on their type, namely grouping
the markup, stylesheets, JS and media files together in separate folders. At this moment
in the markup the URL addresses to those files are also updated accordingly. Final HTML
markup files content is transformed into JSON format for easier post-processing, see fig-
ure 5.3. The JSON files are the core of the new CMS and its initial content. Its nodes
are further analyzed by the parser and processed in order to deliver the Web application's
structure and initial contents. First the <header> and <footer> nodes are stored sepa-
rately. Then the scanning is done recursively for the whole <body> node and using the
depth-first algorithm, each node content is stored into a database structure for persistence.
Nodes that contain no children nodes are stored directly, while those that do are stored as
regions, indicating the pages content structure, see figure 5.4.

Another set of pre-processed (static) server-side files are merged to the final output
and modified according to the input prototype content. These files contain the classes and
functions for a generic Web application business logic, in a model-view-controller (MVC)
and user architectural pattern, naturally according to the Web application's metamodel de-
scribed in the previous chapter. Also they contain the Web application's content structure
in the form of SQL database files exports, see demonstration in figure 5.5.

After these files are generated they are ready to move to the server as they are. This
operation must be manually handled, because of the many possible server configurations
that must be taken into account, which account for a very complex implementation logic
of an automated installation file and it is not within the scope of this work.

52 CHAPTER 5. CASE STUDY

Figure 5.3: An excerpt of the homepage representation in HTML and “readable” JSON
format

Figure 5.4: Recursive parsing and storing of the file content and regions

5.2. GENERATING THE CMS FROM THE HTML PROTOTYPE 53

Figure 5.5: Part of a page (above) and its database representation in the CMS (below)

54 CHAPTER 5. CASE STUDY

5.3 Administration of Content

Once the configuration files are moved into the corresponding server (or put into operation
in a local server) it is possible to start administration of the content from the presentation.
We will demonstrate here how the administration of the pieces of content and regions
shown above would occur, for example during the activity of translating the content texts
into Czech language, since the original template was in English and the change of some
images.

Figure 5.6: Administration options based on the content type

As it is depicted in figure 5.6, the user has several options for modification of the
presentation. Hovering on the top level elements of the page will give him the options to
delete or clone the whole page. Focusing on the content, namely the introduction block,
which was discussed in the previous section, depending on which element the user will
chose, he is given the appropriate modification options. Highlighting the <h2> node he can
easily change the text of the content element with the id 25, highlighting the image on the
left, will give the option to modify the content element with the id 22, or highlighting the
whole block he can modify the HTML content or manipulate with the whole region with
id 13.

Using the presentation as the administration interface is very efficient and the modifi-
cation of the initial template towards the final user expectations is fast and easy. So the
further requirements of the stakeholders can be quickly executed once the CMS is in place
as shown above.

Chapter 6

Evaluation and Results

In this chapter we present the evaluation of the approach and the achieved results. The
evaluation was carried out during the first half of the year 2014. Before this time the
approach was applied and tested several times with real and simulated Web engineering
projects with different companies and individuals. The purpose of this preliminary testing
was to get initial feedback from the involved people as well as to fine-tune the methodology
and tools to fit as best as possible in the different scenarios. From the beginning of the
evaluation period, for a period of six months no further modifications and development
was made, in order to keep the result data consistent and comparable.

Evaluation was done two-fold, qualitatively and quantitatively [A.6, A.2]. The purpose
of the qualitative evaluation phase was to gain general feedback and conclusions about
overall performance criteria for our proposed approach. The focus of the qualitative eval-
uation was the process of applying the methodology in Web engineering projects, i.e. the
human factor. The qualitative evaluation was done with the goal of assessing the applica-
bility of the semi-automated generation of the CMS based on ready-made templates. The
focus of this phase was the evaluation of the concept and the related tools.

Finally an assessment of the overall approach according to evaluation criteria from
related studies and works is presented. This is done for the purpose of comparing our
approach with similar other approaches in the same domain, where applicable. The fo-
cus of this part is to distinguish on a theoretical level the cases, where the methodology
would be beneficial and under which circumstances regarding the stakeholder's needs and
requirements.

6.1 Qualitative Results

The qualitative evaluation was done via selected real-world Web engineering project involv-
ing the creation of a content-based Web application. We executed three projects following
our methodology with selected companies in the Czech republic. The projects were chosen
of different scales, complexity and purpose in order to rule out the specific conclusions that
may be related to the individual projects.

55

56 CHAPTER 6. EVALUATION AND RESULTS

The first project delivered a relatively simple Web application for the presentation of
a musician's curriculum and his concerts program. The second project was with a graphic
studio that required a portfolio presentation of their design works. The third one was an
online catalogue presentation for a medium-sized company selling food products.

To evaluate the approach and its application process in the projects we conducted
survey interviews with project team members after the completion of the project. We
interviewed a total of fifteen people using the same survey interview questions. The inter-
viewed members were directly involved in the execution of the projects. They were chosen
from both technical and non-technical domain in order to get the feedback from people
having different background and skills. Each of the interviewed persons was given a list
of statements and they were required to rate the statements in a scale from zero to four;
zero denoting full disagreement and four denoting full agreement with that statement. The
statements of the survey aimed to rate the approach based on the following areas:

1. Using of the presentation prototype as a conceptual model

2. Generation of CMS based on the HTML prototype

3. Usage of the presentation for the administration of content

4. Overall perception of the methodology

At first an introduction statement was given to explain the meaning of each of these
areas. Then one question was given to be rated as described previously with an agreement
level of zero to four. For each area the same set of criteria were chosen for the evaluation,
namely:

1. How well the individual understands this part of the methodology

2. How often he thinks that this part is applicable in practice

3. How easy would he say was its application

4. How well does he think the application of the methodology has fulfilled the goals

In table 6.1 (page 58) we present a summarization of the scores and results. Under
each line of the table we show the number of answers that were given for the given score
for each particular area and evaluation criteria. We have highlighted the cells containing
the highest number, for easier orientation through the table's data. Further we are going
to asses the evaluation statements for each area.

6.1. QUALITATIVE RESULTS 57

In the following paragraphs we make a summary of each area with regards to the
qualitative evaluation results and conclusions.

Presentation prototype as a conceptual model: Usage of the presentation pro-
totype as a conceptual model for the communication between stakeholders during the
requirements gathering phase rated very well, as is shown by the evaluation result.
93% of the respondents stated that they understand well this part of the approach and
that they find it applicable in practice. 66% of the respondents rated its application
as easily feasible, while 60% said that it fulfilled their expected goals.

The reasons that were given behind the lower scores were related to the expecta-
tion of communicating and covering non-functional requirements. This is clearly a
limitation as was discussed in the previous chapters, however it is possible to keep
the presentation prototype as a conceptual model only for some part of the applica-
tion and combine it with other models or tools that are more appropriate for other
application-specific requirements.

Semi-automated creation of the CMS: This part of the approach rated the low-
est among all the interview areas. Only 33% of the respondents stated that they
understand well the principle of the creation of the CMS based on the HTML pro-
totype, while another 33% were neutral on this statement. 47% thought that this
is applicable in practice. Only 20% of the respondents found its application easily
feasible, while another 47% were neutral on this statement. The majority of the
respondents, over 53% were skeptic about the fulfillment of the expected goals from
this part of the approach.

The reasons given behind the lower scores were related with a common concern
about the applicability of the approach in non content-based Web application. One
of the project contained a large part of application logic related with the sales and
administration of products and their attributes, not just for the presentation part.
Our assessment regarding this part is that the methodology has been fine tuned
for content-based Web applications. So have been the used tools, which make the
application quite limited at this phase. Another reason of the lower scores were
bugs that were discovered during the application. Given the fact that we did not
want to modify the approach during the evaluation phase these concerns have lead to
lower scores in all the interviewed members. These concerns are a matter of further
development and modification of the methodology but it is not within the scope of
this work. It should serve as inspiration for other research groups, who would like to
investigate other types of Web applications and want to apply a similar methodology.

Content administration via the presentation: The principle of administration
of content from the presentation interface rated best in the interviews. Over 93%
of the respondents understood well this part of the methodology and also found it
well applicable in practice. Over 70% of them thought that the application is easily

58 CHAPTER 6. EVALUATION AND RESULTS

Table 6.1: Results of qualitative evaluation

Presentation prototype as
a conceptual model

0 - fully
disagree

1 2 3
4 - fully

agree

Well understanding 0 0 1 8 6

Applicable in practice 0 0 1 7 7

Ease of application 0 2 3 9 1

Fulfills expected goals 0 3 3 9 0

Semi-automated creation
of the CMS

0 1 2 3 4

Well understanding 1 4 5 4 1

Applicable in practice 1 3 4 6 1

Ease of application 1 4 7 1 2

Fulfills expected goals 1 3 8 3 0

Content administration
via presentation

0 1 2 3 4

Well understanding 0 0 1 8 6

Applicable in practice 0 0 1 7 7

Ease of application 0 1 3 9 2

Fulfills expected goals 0 1 4 9 1

Overall perception of the
approach

0 1 2 3 4

Well understanding 0 1 2 6 6

Applicable in practice 0 0 2 8 5

Ease of application 0 2 3 9 1

Fulfills expected goals 0 2 3 8 2

6.2. QUANTITATIVE RESULTS 59

feasible and that it fulfills the expected goals, while less 26% were neutral on these
statements.

The reasoning behind these scores were related to the usability and efficiency of the
proposed process and its short learning curve. Also the method is easy and very
straight-forward, because it is according to the well-known WYSIWYG (what you
see is what you get) principle, which is widely used in the Web engineering community
projects, although only on the level of simple HTML editing tools.

Overall perception of the approach: The overall perception of the approach was
also very positive. Over 80% of the respondents stated that they have a general good
understanding of the approach and more than 86% said that they find it applicable
in practice, which is a very good overall performance result, given the fact that some
of the respondents had problems with the part of the semi-automated generation of
the corresponding CMS. About 67% of the interviewers found that the approach is
easily applicable and that it fulfilled their expectations, while less than 20% of them
were neutral on these statements.

Generally the reasons given on the overall evaluation part were positive and they
found the approach and the related methodology and tools as promising and opti-
mistic for the future.

6.2 Quantitative Results

The quantitative evaluation phase was done for the validation of the second part of the
approach, i.e. the semi-automated generation of the CMS from the HTML prototype,
where some concerns were raised during the qualitative phase of the evaluation. The
evaluation was done by processing several ready-made hi-def HTML prototypes based on
freely available Web templates online [3, 19, 22]. These templates were chosen by hand
and they were picked to simulate by a maximum extent modern real-world projects.

A total of sixty templates were downloaded and used for the experiments. The tem-
plates had a maximum of three page types. As a page type we consider a unique layout
of the page elements different from the other pages, for example homepage, contacts page,
portfolio page etc. For the purpose of conducting the experiment and analyzing the re-
lations between the data we decided to choose the same amount of templates for each
number of page types, i.e. twenty for each, see figure 6.1.

After downloading the template to the local drive, they were parsed one by one. After
the parsing was completed the resulting CMS was analyzed and evaluated in-depth for each
case. We focused on measuring the amount of manual operations needed after parsing of
the prototypes. By manual operation we consider the need of modification of the input
prototypes or the output files in order to correspond to the context of the represented
Web application by that template, respectively the corresponding CMS. As we described

60 CHAPTER 6. EVALUATION AND RESULTS

previously, no changes of the tools were made throughout the evaluation phase, only the
input and output artifacts were modified.

Figure 6.1: Graph showing percentual split of templates by page types

The evaluation showed that overall the need for manual modification is considerably
small, because the underlying metamodel is quite general and the technique is based on
reverse engineering principles that are common for most Web applications in the domain.
The minimal number of manual intervention (for modification) was required in the single
page type templates, which is expected, because of their simple and flat structure. Namely
a total of 4 manual operations occurred for the whole set of twenty templates, i.e. 20%
of the templates required one manual operation and 80% needed no modifications. Out
of the two page types templates, 50% of them required no modifications either. 30% of
them needed one manual intervention, 15% two manual interventions and 5% (just one of
the templates) required a three manual modifications. This means a total of 15 manual
operations was required overall during the parsing of the twenty two page types templates.
For the set of templates with three page types 35% needed no manual modifications and
another 35% needed just one modification. 20% of templates required twice a manual
intervention after parsing and 10% required three manual interventions, leading to a total
of 21 manual operations for the whole set of templates. No more than three manual
interventions was needed for any of the templates included in the experiments. However,

6.2. QUANTITATIVE RESULTS 61

Figure 6.2: Graph of templates and number of manual operations

data tend to incline to a conclusion, that more complex templates require more manual
operations, making the parsing less effective overall. On the other hand most content-based
Web applications, based on empirical analysis of another set of over one hundred of other
templates downloaded from the previously mentioned sources of free online templates,
contain within one and five page types. Hence we can assume that the amount of manual
operations in general would grow linearly based on the number of templates but then would
saturate and not grow further because no more new page types would be introduced in a
real-world project.

The amount of manual operations increases by the number of page types contained in
the input prototype, see figures 6.2 and 6.3. However, the need for manual intervention can
be further reduced in two ways: a) by introducing development conventions that could be
used in the HTML prototype, b) by building more variations of the underlying model that
are appropriate for specific types of projects. Each of these approaches has its pros and
cons. Introduction of conventions is a simple solution but it is a hard task in reality, because
of the very nature of Web applications and their context. Also, among the development
community in Web engineering there are certain patterns that the developers of templates
are used to follow and changing of those patterns is a very hard task execution-wise. The
second solution of introducing further variations of the model of the Web application,
i.e. leading to modification of the programming techniques involved in the parsing and
generation of the CMS is also a hard task that requires time, but it is more straight-

62 CHAPTER 6. EVALUATION AND RESULTS

Figure 6.3: Total number of manual operations by number of page types and its trendline

forward and safe. Both these approaches will be considered for future works within our
team of research.

6.3 Comparative Evaluation

In order to put the approach under a relative perspective with regards to other works in
the Web engineering domain, we have done a comparative evaluation and assessment based
on some chosen criteria. Such an assessment is important to prove the relevance and point
out pros and cons of different possible approaches based on the environment of the project
at hand.

To chose the comparative evaluation criteria we consider related studies, in order to
be as much standard as possible in the evaluation process. Specifically we have used and
adapted criteria from a reference model for the comparison of model-driven approaches in
the Web engineering domain as defined by Saraiva J. et al. [42, 43]. We have found these
two studies as those that are most relevant for our research and approach, because they
focus on the comparison criteria for related modeling languages in Web engineering and
the chosen aspects of these criteria are commonly used also in other similar works. Below
we describe these criteria on a high-level for a better understanding of their concern and
finally present the comparison chart between the our approach and the other approaches

6.3. COMPARATIVE EVALUATION 63

presented in the background chapter of this thesis.

DM: Support for Domain Modeling. The domain modeling support is the cri-
teria that deals with the ability of the approach to represent concepts of the corre-
sponding domain (in our case Web engineering) using appropriate modeling notions.
This means that we evaluate, whether the approach covers visualization concepts such
as diagrams, charts or other blueprints for the modeling of that domain. Domain
modeling ability is an important factor for the understanding and further consistent
development of every approach.

MAB: Ability to Model Application's Behavior. The ability to model appli-
cation's behavior concerns the possibilities of the approach to support modeling of
the Web applications dynamic behavior, so-called business logic. The most important
aspects of application's behavior modeling are considered the possibility to control
changes of the domain concepts and whether the process of these changes can be
specified in a human-readable form. The ability to support modeling of business
logic may vary, depending on the approach at hand, so the evaluation of this criteria
can be subjective, however it is important to distinguish whether the given approach
does focus in the business logic at all and if so, up to what extent.

NPF: Support for Navigation and Page Flow. The third criteria deals with
the ability of expressing and presenting possible paths of navigation between dif-
ferent pages of the Web application. In a certain context a path can also exist within
the same page, so generally this means covering and expressing of navigation paths
between any source and destination pages and/or its elements. The support for mod-
eling navigation and page flow is almost implicitly required for any approach that
deals with Web applications, therefore this criteria is included in the evaluation and
is considered as one of the most importants.

MUI: Modeling of User Interfaces. The ability to model the Web application
from a user interfaces aspect is another evaluation criteria that we consider. Again,
this is a fundamental aspect when dealing with Web applications in general, but
besides the overall support for modeling user interfaces, here we also evaluate how
the approach deals with this part. When the approach requires additional software or
tools for the modeling of user interfaces, we evaluate this fact as only partial support.

TM: Transformation of Models. The fifth criteria that is considered in this
study deals with the ability of the approach to support transformation of a source
model to a destination model in an automated and error-prone way, without loss of
precision and consistency. In our case we also consider within this part the ability
to transform models to code, because the aim of model transformation in general is
to reduce effort and problems with the generation of the application's artefacts. For
example a model of the Web application produced by the business analyst can be

64 CHAPTER 6. EVALUATION AND RESULTS

transformed into another model for the application designer that would match his
point of view to the application.

CGA: Completeness of Generated Application. In this criteria we factor the
ability of the approach and its related tools to generate a complete and fully func-
tional Web application. Another aspect that we consider here is the amount of
manual intervention required by the project's team members during this process, as
we discussed previously. This aspect, however, may vary depending on the type of
application and the purpose of the given approach, so it is harder to give a holistic
evaluation mark. Also through time, some of the approaches that are considered in
the evaluation may change, because they are still under development. Nevertheless,
this should give to the reader a general perception of the maturity and practical
orientation of each approach.

PI: Platform Independency. The last evaluation criteria that we consider is the
dependency of the approach on the technological aspect of the Web application and
its underlying platform. Namely we consider here whether the approach is more a
set of principles and methods that can be applied regardless of the platform under
which the resulting application will run. This should give to the reader an idea of
how well the given approach can fit under his specific technological requirements and
how much it can bend in order to meet them.

In table 6.2 we summarize the comparative evaluation results for each of the approaches
and works that were discussed in chapter 3 (State of the Art and Related Works). We
give three types of values for each criteria. Y meaning Yes, as the approach does include
sufficient support for that criterias aspects. N meaning No, as the approach does not
include any support at all for the corresponding criterias aspects. P meaning Partially,
in the case that the given approach has some support, or at least deals with some of the
criterias aspects, although that is not sufficient to be fully considered as supported by that
approach.

Summarizing this section, we could say that each of the studied approaches have their
strengths and weaknesses. The WebML, as the most mature approach is most ahead in
terms of covering needed aspects of the Web engineering from a modeling perspective,
although its biggest disadvantage is the proprietary development of its tools that do not
allow its development according to the needs of general community. Also WebML does not
have appropriate expressiveness for some parts of the user interface and business process
modeling aspects. UML on the other hand is most advanced in all of the modeling aspects,
but it lacks the expressiveness needed for the Web engineering domain, for example user
interfaces, therefore it cannot be used as standalone for an end-to-end Web application
development. UWE is also enough mature and does pretty well in large-scale Web engi-
neering projects. Most importantly the notions of UWE allow an iterative approach of
application design and development, therefore addressing different concerns at different
levels of detail on different stages. The lack of appropriate transformation techniques for
its models is probably the biggest disadvantage of UWE. The CMS modeling language has

6.3. COMPARATIVE EVALUATION 65

Table 6.2: Comparative evaluation criteria and their support by our and other related
approaches and languages

Approach DM MAB NPF MUI TM CGA PI

Web Modeling Language
(WebML)

Y P P Y P P Y

Unified Modeling Language
(UML)

Y Y Y N Y N Y

UML-based Web Engineer-
ing (UWE)

Y Y Y P Y N Y

CMS Modeling Language
(CMS-ML)

Y Y N Y Y P Y

Web Engineering Method
(WEM)

Y P Y P Y N Y

Two-way Metamodeling
Approach

Y P Y Y Y P Y

DM — Support for Domain Modeling TM — Transformation of Models

MAB — Ability to Model Applications
Behavior

CGA — Completeness of Generated
Application

NPF — Support for Navigation and Page
Flow

PI — Platform Independency

MUI — Modeling of User Interfaces

66 CHAPTER 6. EVALUATION AND RESULTS

its strength in the split of two levels, addressing needs of technical and non-technical user
by different notions. However, the lack of expressiveness for the navigation flow makes
it limited in terms of usage for Web applications that are heavily based on the presenta-
tion properties. The WEM suffers from a complex structure of its underlying modeling
elements. , on-going evaluation projects that are being carried out via WEM show for
promising results and improvements in the future. Our proposed approach stands out in
content-based applications that are heavily based on the presentation properties. However,
as previously discussed, the approach and tools will require further development to reduce
the need for manual operations leading to a completeness of the delivered application.

Chapter 7

Conclusions and Discussion

This thesis focuses in improving the state of the art in the domain of Web engineering
by using model-driven methodologies. The aim of the research is to design an approach,
supported by a methodology and tools, for practical usage in Web engineering projects,
specifically for the creation of content-based Web applications (CBWA). This approach
focuses to reduce the communication gap between the stakeholders involved in the project.
Moreover, it aims to reduce the required effort for the production of the final Web appli-
cation's components and content.

The research has evolved around the following two specific problems:

Problem P1
“To define model(s) of the Web application that will allow the users to communicate
conceptually on the same level, while also allow automation of some parts of the
application development.”

Problem P2
“To design a methodology for the creation of a content-based Web applications that
will be enough simple for practical usage by the non-technical user, while still enable
the technical user to adapt and extend it in a natural way.”

7.1 Conclusions

To find a solution to the above-mentioned problems we have based the research on fun-
damentals coming from natural processes and best practices learned during real-world
projects. We focus on reducing overhead and costs of adoption of the involved method-
ology by using existing artefacts as a basis for communication between stakeholders and
for the generation of other artefacts during the development process. We apply automa-
tization techniques to parts of the process that are common in most projects, such as the
generation of structure and initial content of the CMS application. During our research

67

68 CHAPTER 7. CONCLUSIONS AND DISCUSSION

we have studied related works, existing methodologies and analyzed their strengths and
weaknesses to learn from what has been done already in the same domain.

Based on the acquired information, we have proposed a two-way metamodel-based ap-
proach that enables (semi-)automated creation of CBWA and its effective administration
in the future. The first part of the approach concerns a methodology for the requirements-
gathering phase. We propose the usage of a presentation prototype as the conceptual
model of the CBWA to improve communication between stakeholders at the initial phases
of the project (bottom-up phase). The second part deals with the application logic and
content management. We have proposed a generic metamodel and a technique for produc-
ing the CMS automatically by parsing the HTML prototype, using some predefined rules
and reverse engineering principles based on common patterns from popular CMS solutions
in the Web engineering domain (top-down phase). The third part of the approach deals
with the maintenance process of the Web application in the future. We propose the usage
of the Web application's presentation as the CMS interface for common content admin-
istration operations. Within the research we have developed supporting proof-of-concept
tools for this approach. These tools involve some platform-specific attributes, however the
principles, of which they consist, can be applied regardless of the underlying technologies,
respectively the tools can be further developed to support more platforms and technologies
for the development of CBWA.

The approach has been applied and evaluated in real-world projects from a qualitative
perspective as well as in simulated experiments from a quantitative perspective. Also a
comparative evaluation between the presented proposal and related works is presented. The
results show that a wider application of the methodology and tools in practice is promising
and principles of the methodology can improve the state of the art in the domain of CBWA
development, namely by improving the communication process between stakeholders and
reducing the overall effort required for the Web application creation and operation.

There are certain constraints and limitations that were identified during the evalu-
ation process. These constraints come from the used concepts in the research and the
type of the projects that the approach has been optimized for, namely the content-based
Web applications. These constraints impose further possibility for the development of the
proposed approach, which may serve as an inspiration for further future work within our
research group, or elsewhere in the Web engineering community. As discussed previously,
the approach proposed in this thesis has been applied and optimized for content-based
Web applications, as one of the most widely spread types of application in the Web en-
gineering discipline. However, it is important to point out that the principles that have
been introduced are not bound to this type of application and they can be applied to any
Web application.

7.2 Discussion

In the next following paragraphs we will discuss some aspects of the proposed approach
with regards to their strengths and weaknesses as they have been identified during the

7.2. DISCUSSION 69

research, aiming to give an answer to the research question Q3.
For the first part, related to the bottom-up phase, using of a presentation prototype as

a conceptual model for automatic transformation, the principle was evaluated very well.
Little or no modification would be required, when applying this principle for another type
of Web application containing at least some content-based parts. This comes due to the fact
that any kind of Web application has a front-end presentation that is accessible to the users
for the interaction with the application's back-end and dynamic operations. For certain
types of applications that involve concepts not representable (or visible) in the front-end,
another intermediate level of modeling may be introduced, to which similar code-generation
techniques can be applied for the transformation of the models into application assets.

As per the underlying metamodel, the delivered results have performed well, fulfilling
the expectations from this work. For another type of application than those that are
content-based, the differences and needs for modification however would be considerable.
This is because of the very basic principle of metamodeling itself, which is to abstract
concepts of the system into models that can be generalized and used in many instances.
The metamodel components are directly related with entities of typical content-based Web
applications. Although on a high-level the generic metamodel, which has been defined,
includes components that are common for more types of applications (users, content and
navigation) they are generally not enough reliable to model another type of applications,
as they would lack the expressiveness required to cover some application-specific concepts.
Therefore, further development for the enrichment of the metamodel imposes possible
future work in order to increase its strength and wider application possibilities.

With regards to the algorithm and parser tools (supporting the top-down phase of the
approach), some application-specific concepts related to the content-based types of ap-
plication are involved. The patterns and knowledge used for their creation are based on
processes that are bound to content-based applications. However, the principle as such
is applicable elsewhere. Generating backend logic for any type of application is possible
based on patterns and predefined heuristic rules that can be observed in similar projects.
Further analysis would be required for the purpose of finding general rules that may be
applicable throughout the Web engineering discipline projects, regardless of the applica-
tion type. Another specific aspect of the tools described in this research is related to the
used technologies and programming languages. Their choice has been made pragmatically,
due to the fact that proving of the concepts has been one of the key requirements since
the beginning of the research, which need not be too much theoretical. Being platform
specific is the only possible option when trying to develop such tools in practice. On the
other hand the used technologies and languages are very popular in the real-world of Web
engineering projects as well. In the case that other technologies would be required, porta-
tion of the algorithm and tools is possible without any loss of applicability as Web-related
technologies are quite similar in terms of expressiveness, architecture and purposes. The
main difference would be in the semantics and syntax. Finally, for the part of administra-
tion of content through the presentation, we could say that the principle is also applicable
in several types of Web applications, because most of them involve content creation and
its presentation at a certain point. The difference here would be in the users and their

70 CHAPTER 7. CONCLUSIONS AND DISCUSSION

roles in the creation and consumption of content. Specific concepts related to the type of
application would affect widely the benefits of such approach. This is also a potential area
for further research and development, especially having shown within this thesis that the
principle of simplification and improvement of the usability in any area of the application
operation and administration process is a key factor for the successful embracement and
application of the methodology in practice. For the content-based type of Web applications
as such, further development would be helpful in finding more patterns and heuristic rules
from real-world projects and improving applicability of the algorithm in more specific envi-
ronments, while keeping a low number of manual operations required. Also, as mentioned
previously, portation of tools for other common Web-related technologies and program-
ming languages would also be useful to the community and it represents a potential for
wider acceptance of the methodology in the real-world.

7.3 Summary

From an overall perspective the proposed approach performs well, when it is properly
applied in the domain of content-based Web applications. As it was shown in the evaluation
phase, using the proposed methodology for the requirements gathering phase, reduces the
effort required for the proper communication between stakeholders, while still allowing
them to fulfill their needs. Moreover, such an approach allows for the subsequent usage
of the delivered prototype for a partially automated parsing process that delivers the
application's content administration system and structure, which is understandable for
the non-technical stakeholders. This gives them more freedom and less dependency from
the technical team-members, reducing also the overall effort for the creation of the Web
application. It also gives possibilities for further incremental functionality development,
because the involved model of the application is very generic. From this point of view we
consider that the thesis outcome has achieved positive answers to the defined problems P1
and P2 and has improved the situation in the area of research.

Besides this general achievement the thesis outcome also contributes with several in-
sights in both the scientific and also practical perspectives of Web engineering projects.
Namely we can mention, the “decoupling” of the administration interface from the appli-
cation's structure and bringing it closer together to the presentation model, which is more
intuitive and delivers higher efficiency in content administration process. This idea is quite
unique in the domain and has extremely high potential once it can be properly integrated
on a large scale.

Another benefit of this work is also that it proves the fact that combining low-level and
high-level concepts within the same process is possible without loss of expressivity, which is
needed in most cases. Specifically, although starting with the presentation prototype that
can be arbitrarily exact and complete, the combination of this prototype with a generic
representation of the applications model still leaves enough flexibility for a proper definition
and finalization of the required Web application's components and content. Such approach
can be exploited in many other areas, not just in the Web engineering, but also in other

7.3. SUMMARY 71

industries, where appropriate.
Finally we can say that the completion of this thesis has brought several beneficial

information to the research area. After several years of development of the approach, the
related methodology and tools, there is always room for more improvement. We hope that
the outcome of this thesis will serve as a “spark” for future research works that will take
advantage of the achieved results and will try to further move the impact of our work to
the prosperity of the community.

72 CHAPTER 7. CONCLUSIONS AND DISCUSSION

Bibliography

[1] Action Research Method, Wikipedia.
https://en.wikipedia.org/wiki/action research, (Last accessed December 2014).

[2] C. Benevolo and S. N. Evaluation of content management systems (cms): a supply
analysis. In Proceedings of the 13th European Conference on Information Technology
Evaluation, 2007.

[3] Best Free Responsive HTML5 CSS3 Templates.
http://www.html5xcss3.com/, (Last accessed December 2014).

[4] B. Boehm and A. Malik. Quantifying requirements elaboration to improve early soft-
ware cost estimation. Information Sciences, 2009.

[5] B. Boiko. Content Management Bible (2nd Edition). Wiley Publishing, Inc, 2004.

[6] Bultwith Technology Lookup.
http://builtwith.com/, (Last accessed December 2014).

[7] A. Byron, A. Berry, N. Haug, et al. Using Drupal. O’Reilly Media, 2008.

[8] S. J. B. Castro, R. G. Crespo, and G. V. H. M. Antipatterns: a compendium of
bad practices in software development processes. International Journal of Interactive
Multimedia and Artificial Intelligence, pages 41–46, 2011.

[9] S. Ceri, M. Brambilla, and P. Fraternali. The history of webml lessons learned from
10 years of model-driven development of web applications. Lecture Notes in Computer
Science, Conceptual Modeling: Foundations and Applications, pages 273–292, 2009.

[10] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, and M. Matera. Designing Data-
Intensive Web Applications. Morgan Kaufmann, 2003.

[11] CMS Matrix.
http://www.cmsmatrix.org/, (Last accessed December 2014).

[12] Comparison of Content Management Systems.
http://en.wikipedia.org/wiki/comparison of content management systems, (Last ac-
cessed December 2014).

73

74 BIBLIOGRAPHY

[13] J. Conallen. Building Web Applications with UML. Addison-Wesley, 2000.

[14] M. G. Danny and E. Visser. Weaving web applications with webdsl: Demonstration.
In Proceedings of the 24th ACM SIGPLAN conference companion on Object oriented
programming systems languages and applications, 2009.

[15] Drupal - Open-source CMS.
https://www.drupal.org/, (Last accessed December 2014).

[16] M. Epner. Poor project management number-one problem of outsourced e-projects.
Research Briefs, Cutter Consortium, 2010.

[17] Evolution of the Web.
http://www.evolutionoftheweb.com/, (Last accessed December 2014).

[18] P. Fraternali, G. Rossi, and S.-F. F. Rich internet applications. IEEE Internet Com-
puting, pages 9–12, 2010.

[19] Free HTML5 Templates.
http://www.freehtml5templates.com/, (Last accessed December 2014).

[20] W. Gibbs. Software chronic crisis. Scientific American, 1994.

[21] High Productivity Web and Mobile App Dev Platform — WebRatio.
http://www.webratio.com/portal/content/en/home, (Last accessed December 2014).

[22] HTML5UP, Responsive HTML5 and CSS3 Site Templates.
http://html5up.net/, (Last accessed December 2014).

[23] Internet Live Stats.
http://www.internetlivestats.com/, (Last accessed December 2014).

[24] ISO/IEC 9126-1:2001 Software Engineering, Product Quality.
http://www.iso.org/iso/catalogue detail.htm?csnumber=22749, (Last accessed De-
cember 2014).

[25] Joomla! The CMS Trusted By Millions for their Websites.
http://www.joomla.org/, (Last accessed December 2014).

[26] G. Kappel, B. Prll, S. Reich, and R. W. Web Engineering: The Discipline of System-
atic Development of Web Applications. Wiley, New York, 2006.

[27] N. Koch, A. Knapp, et al. Uml-based web engineering: An approach based on stan-
dards. Web Engineering: Modelling and Implementing Web Applications, pages 157–
191, 2008.

BIBLIOGRAPHY 75

[28] C. Kroiss, N. Koch, and A. Knapp. Uwe4jsf: A model-driven generation approach for
web applications. Web Egineering, Lecture Notes in Computer Science, 5648:493–496,
2009.

[29] Magic Draw, Wikipedia.
https://en.wikipedia.org/wiki/magicdraw, (Last accessed December 2014).

[30] M. Maristella, F. Rizzo, and G. Carughi. Web usability: Principles and evaluation.
Web Engineering, pages 143–180, 2006.

[31] A. McDonald and R. Welland. Agile web engineering process: Perceptions within a
fortune 500 financial services company. Journal of Web Engineering, 4:283–312, 2005.

[32] E. Mendes, I. Watson, C. Triggs, et al. A comparative study of cost estimation models
for web hypermedia applications. Empirical Software Engineering, 8:163–196, 2003.

[33] Meta-Object Facility - Wikipedia.
https://en.wikipedia.org/wiki/meta-object facility, (Last accessed December 2014).

[34] N. Moreno, J. R. Romero, and A. Vallecillo. An overview of model-driven web engineer-
ing and the mda. Web Engineering: Modelling and Implementing Web Applications,
Human-Computer Interaction Series, pages 353–382, 2008.

[35] J. Nielsen. Usability for the masses. Journal of Usability Studies, 2005.

[36] B. Nuseibeh, C. Haley, and C. Foster. Securing the skies: In requirements we trust.
IEEE Computer, pages 64–72, 2009.

[37] Object Management Group, OMG.
http://www.omg.org, (Last accessed December 2014).

[38] Overview of Action Research Methodology, Obrien R.
http://web.net/ robrien/papers/arfinal.html, (Last accessed December 2014).

[39] O. Pastor, J. Fons, and S. Abrahao. Conceptual modelling of web applications: The
oows approach. Web Engineering, pages 277–302, 2006.

[40] R. S. Pressman. Applying web engineering. Software Engineering: A Practitioner’s
Approach, 2005.

[41] J. M. Rivero, J. Grigera, G. Rossi, et al. Towards agile model-driven web engineering.
Lecture Notes in Business Information Processing, 107:142–155, 2012.

[42] J. S. Saraiva and A. Rodrigues. A reference model for the analysis and comparison of
mde approaches for web-application development. Journal of Software Engineering &
Applications, Scientific Research, 3:419–425, 2010.

76 BIBLIOGRAPHY

[43] J. S. Saraiva and A. R. Silva. Evaluation of mde tools from a metamodeling perspec-
tive. Principle Advancements in Database Management Technologies: New Applica-
tions and Frameworks, pages 105–131, 2009.

[44] J. S. Saraiva and A. R. Silva. Web-application modeling with the cms-ml language.
Symposium of Informatics, 2010.

[45] D. Schwabe and G. Rossi. Model-based web application development. Web Engineer-
ing, pages 303–333, 2006.

[46] R. Severdia and K. Crowder. Using Joomla: Building Powerful and Efficient Web
Sites. OŔeilly Media’Reilly Media, 2009.

[47] B. Shneiderman and C. Plaisant. Designing the User Interface: Strategies for Effective
Human-Computer- Interaction. Addison-Wesley, 4th edition (international) edition,
2005.

[48] J. Souer, T. Kupers, R. Helms, and B. S. Model-driven web engineering for the auto-
mated configuration of web content management systems. Web Engineering Lecture
Notes in Computer Science, 5648:121–135, 2009.

[49] The Web Modeling Language.
http://www.webml.org, (Last accessed December 2014).

[50] UML-based Web Engineering.
http://uwe.pst.ifi.lmu.de/index.html, (Last accessed December 2014).

[51] Unified Modeling Language, Object Management Group.
http://www.omg.org/spec/uml/, (Last accessed December 2014).

[52] Unified Modeling Language, Wikipedia.
https://en.wikipedia.org/wiki/unified modeling language, (Last accessed December
2014).

[53] UWE - MagicUWE.
http://uwe.pst.ifi.lmu.de/toolmagicuwe.html, (Last accessed December 2014).

[54] M. Vasko, E. Oberortner, and S. Dustdar. Collaborative modeling of web applications
for various stakeholders. In Proceedings of the 9th International Conference on Web
Engineering (ICWE), 2009.

[55] W3Techs - Extensive and Reliable Web Technology Surveys.
http://w3techs.com/, (Last accessed December 2014).

[56] D. Wallace, I. Raggett, and A. J. Extreme Programming for Web Projects. Addison-
Wesley, 2002.

BIBLIOGRAPHY 77

[57] Wordpress, Blog Tool, Publishing Platform and CMS.
https://wordpress.org/, (Last accessed December 2014).

[58] J. Wright and J. Dietrich. Survey of existing languages to model interactive web
applications. In Proceedings of the 5th Asia-pacific Conference in Conceptual Modeling,
2008.

78 BIBLIOGRAPHY

Publications of the Author

Relevant Publications in Impacted Journals

[A.1] C. V. Nguyen (80%), X. Qafmolla (10%) and K. Richta (10%). Domain Specific Lan-
guage Approach on Model-driven Development of Web Services. Acta Polytechnica
Hungarrica, pp. 121-138, 2014 (vol. 11), ISSN 1785-8860.

Relevant Publications in Reviewed Journals

[A.2] X. Qafmolla (80%), C. V. Nguyen (10%) and K. Richta (10%). Metamodel-based
Generation of Web Content Management Systems. International Journal on Infor-
mation Technologies and Security, pp. 17-30, 2014 (vol. 4), ISSN 1313-8251.

[A.3] C. V. Nguyen (60%) and X. Qafmolla (40%). Model Transformation in Web Engineer-
ing and Automated Model Driven Development. International Journal of Modeling
and Optimization, pp. 7-12, 2011 (vol. 1), ISSN 2010-3697.

The paper has been cited in:

• D. Arvidsson and F. Persson. Evaluating a Design Pattern for Black-Box Test-
ing in Executable UML, Master Thesis, Chalmers University of Technology,
University of Gothenburg, Sweden, 2012.

• M. Rahmouni and M. Samir. MDA-based ATL transformation to generate MVC
2 web models, Proceedings of Transformation 2011 Conference, 2011.

Relevant Publications Indexed by ISI/Scopus

[A.4] X. Qafmolla (50%) and C. V. Nguyen (50%). Automation of Web Services Devel-
opment Using Model Driven Techniques. Proceedings of the 2nd IEEE International
Conference on Computer and Automation Engineering (ICCAE 2010), Singapore,
Singapore, pp. 190-194, 2010 (vol. 3), ISBN 978-1-4244-5585-0.

The paper has been cited in:

79

80 PUBLICATIONS OF THE AUTHOR

• N. Tavares and V. Samyr. Towards Interoperability to the Implementation of
RESTful Web Services: A Model Driven Approach, ICONS 2014, The 9th In-
ternational Conference on Systems, 2014.

• B. Simon, B. Goldschmidt and K. Kondorosi. A Metamodel for the Web Services
Standards, Journal of grid computing, pp. 735-752, 2013.

• N. Tavares, and V. Samyr. A Model Driven Approach for the Development of
Semantic RESTful Web Services, Proceedings of International Conference on
Information Integration and Web-based Applications & Services, ACM, 2013.

• L. O. Chih-Min and H. Sun-Jen. Applying Model-Driven Approach to Building
Rapid Distributed Data Services, Transactions on Information and Systems,
pp. 2796-2809, 2012.

• M. A. O. Mukhtar, M. F. B. Hassan and J. B. Jaafar. Optimizing Method to
Provide Model Transformation of Model-driven Architecture as Web-based Ser-
vices, International Conference on Computer & Information Science (ICCIS),
Kuala Lumpur, Malaysia, pp. 874-879, 2012, ISBN 978-1-4673-1937-9.

• J. Mtsweni, E. Biermann and L. Pretorius. SemServ: Facilitating the Implemen-
tation of Intelligent Semantic Services, Proceedings of the Ninth International
Network Conference (INC 2012), 2012.

• M. A. O. Mukhtar, A. Azween and G. D. Alan. A Proposed Compiler to In-
tegrate Model Driven Architecture with Web ServicesRoad Map. International
Journal of Computer Applications, pp. 1-7, 2011.

• Z. Zohrevand, Y. M. Bibalan and R. Ramsin. Towards a Framework for the
Application of Model-Driven Development in Situational Method Engineering,
18th Asia Pacific Software Engineering Conference (APSEC), Ho Chi Minh,
Vietnam, pp. 122-129, 2011, ISSN 1530-1362.

[A.5] C. V. Nguyen (67%) and X. Qafmolla (33%). On Instance-model Querying and
Meta-model Transformation. Proceedings of the 2010 International Conference on
Software Engineering (IAENG), Hong Kong, China, pp. 710-715, 2010 (vol. 1),
ISSN 2078-0958.

Other Relevant Publications

[A.6] X. Qafmolla (80%) and C. V. Nguyen (20%). Semiautomatic Generation of Content-
based Web Applications: An Evaluation of Supporting Tools. 5th International Sym-
posium on Information Management in a Changing World (IMCW2014), Antalya,
Turkey, 2014.

[A.7] X. Qafmolla (50%) and C. V. Nguyen (50%). A Two-Way Meta-Modelling Approach
in Web Engineering. Procedia Information Technology and Computer Science, 3rd

PUBLICATIONS OF THE AUTHOR 81

World Conference on Information Technology, Barcelona, Spain, 2012, ISSN 2147-
5105.

[A.8] X. Qafmolla (50%) and C. V. Nguyen (50%). Model-driven Practices in Web Engi-
neering. Proceedings of Objekty 2009 Conference, Hradec Králové, Czech Republic,
pp. 185-195, 2009 (vol. 1), ISBN 978-80-7435-009-2.

[A.9] C. V. Nguyen (50%) and X. Qafmolla (50%). Towards Automated Model-driven
Development with Model Transformation and Domain Specific Languages. Proceed-
ings of The International Conference on Computer and Software Engineering, Kuala
Lumpur, Malaysia, pp. 128-134, 2012, ISBN 978-93-82242-22-2.

[A.10] C. V. Nguyen (70%) and X. Qafmolla (30%). On Model Transformation Methods
and Testing of Model Transformation to Support Automated Model Driven Develop-
ment. Proceedings of the 3rd International Conference on Computer and Automation
Engineering, Chongqing, China, pp. 171-175, 2011 (vol. 1), ISBN 978-1-4244-9462-0.

[A.11] C. V. Nguyen (50%) and X. Qafmolla (50%). Agile Development of Platform Inde-
pendent Model in Model Driven Architecture. Proceedings of theThird International
Conference on Information and Computing (ICIC), Beijing, China, pp. 344-347,
2010 (vol. 2), ISBN 978-1-4244-7081-5.

The paper has been cited in:

• F. J. Pereda and A. Molina. Model driven architecture for engineering design
and manufacturing, Management and Control of Production and Logistics, pp.
400-407, 2013.

• G. Botturi et al. Model-driven Design for the Development of Multi-platform
Smartphone Applications, Specification & Design Languages (FDL), 2013 Fo-
rum on IEEE, pp. 1-8, 2013.

• E. Brandtzaeg. A DSL for Model-based Realization of Applications in the Cloud,
Master Thesis, University of Oslo, Norway, 2012.

[A.12] C. V. Nguyen (50%) and X. Qafmolla (50%). Metamodel Transformation with
Kermeta. Proceedings of Objekty 2008 Conference, Žilina, Slovakia, pp. 109-116,
2008, ISBN 978-80-8070-927-3.

Other Less Relevant Publications

[A.13] C. V. Nguyen (50%) and X. Qafmolla (50%). A Practical Approach on Implementing
Scrum in Mid-size Companies. Proceedings of Objekty 2009 Conference, Hradec
Králové, Czech Republic, pp. 185-195, 2009 (vol. 1), ISBN 978-80-7435-009-2.

[A.14] T. Fluori (50%) and X. Qafmolla (50%). Linear Pattern Matching with Swaps for
Short Patterns. Proceedings of the 10th International PhD Workshop on Systems

82 PUBLICATIONS OF THE AUTHOR

and Control, Hluboká nad Vltavou, Czech Republic, pp. 109-116, 2009, ISBN
978-80-903834-3-2.

Appendix A

Anotace

Tato disertacńı práce se zabývá novým modelem ř́ızeným př́ıstupem (model-driven ap-
proach) ve webovém inženýrstv́ı. Tento př́ıstup má za ćıl zmenšit komunikačńı propast,
která existuje mezi zainteresovanými subjekty v počátečńıch fáźıch webových projekt̊u.
Zároveň je jeho ćılem usnadnit celkové vývojové aktivity potřebné na př́ıpravu finálńı we-
bové aplikace. Navržený př́ıstup je ilustrován na oblasti webových aplikaćı pro správu
obsahu (content-based Web applications) a je podporován demonstrativńımi softwarovými
nástroji (proof-of-concept tools) a př́ıslušnou metodikou.

V oblasti webového inženýrstv́ı již existuje několik modelem ř́ızených př́ıstup̊u, které
byly vyvinuty v posledńım desetilet́ı. Nicméně, většina z nich je už zastaralých a nejsou již
použ́ıvané. Ty, co jsou stále aplikované, většinou vyžaduj́ı celkem specifické prostřed́ı pro
jejich použit́ı a zároveň představuj́ı velké náklady při zaváděńı do praxe. Hlavńım d̊uvodem
je, že modelovaćı část aplikovaných metod je orientovaná na př́ıstup shora-dol̊u (top-down),
tzn. na začátku se členové týmu zaměř́ı na př́ıpravu konceptuálńıho modelu s vysokou
úrovńı abstrakce. Nad t́ımto modelem jsou pak aplikované transformačńı techniky pro vy-
generováńı finálńıch komponent. Takový př́ıstup má svá úskaĺı. Za prvé, komunikace mezi
zainteresovanými subjekty na vysoké úrovni abstrakce v ranných fáźıch projektu je obt́ıžná
a nepřesná, což přináš́ı problémy a zvýšenou námahu při daľśı práci v pozděǰśıch fáźıch.
Za druhé, samotná transformace abstraktńıho modelu je komplexńı záležitost, obnáš́ı velké
množstv́ı chyb a potřebu častého ručńıho zásahu do jednotlivých komponent. Na rozd́ıl od
těchto metod, je náš návrh založen na dvoj́ım př́ıstupu (two-way approach) při stvořeńı a
transformaci model̊u. Technický i netechnicky zdatńı členové týmu využ́ıvaj́ı při př́ıpravě
požadavk̊u konceptuálńı model založený na ńızké úrovňi abstrakce, jako např. rychlý pro-
totyp (rapid prototype) webové aplikace v jazyce HTML, nebo jiný podobný prototyp,
pro fázi sdola-nahoru (bottom-up). Po několika iteraćıch, jakmile je vytvořený model
dostatečně kompletńı, je použit jako vstup pro (semi-)automatickou tvorbu př́ıslušných
komponent finálńı aplikace a jej́ıho obsahu, tj. pro fázi shora-dol̊u (top-down).

Navržený př́ıstup byl kvalitativně vyhodnocen v reálných př́ıpadových studíıch (real-
world case-studies) a kvantitativně přes simulaci velkého množstv́ı projekt̊u, použit́ım
volně dostupných (open-source) šablon webových aplikaćı. Dosažené výsledky jsou slibné
a představuj́ı velký potenciál pro zlepšeńı situaci v praxi, při aplikaci technik modelem

83

84 APPENDIX A. ANOTACE

ř́ızeného vývoje v oblasti webového inženýrstv́ı.

Kĺıčová slova:
Webové inženýrstv́ı, webové aplikace na správu obsahu, modelem ř́ızený vývoj, gen-

erováńı kódu.

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Web Engineering Perspective
	Model-driven Perspective
	Web Modeling Discipline
	Rationale and Research Questions
	Thesis Outcome
	Problem Definition
	Research Approach
	Thesis Outline
	Textual Notations

	Background
	Web Engineering Framework
	Web Application Characteristics
	Web Application Types
	Web Application Development Process
	Requirements
	Modeling in Web Engineering
	Usability of Web Applications

	State of the Art and Related Work
	Web Modeling Language
	Unified Modeling Language
	UML-based Web Engineering
	CMS Modeling Language
	Web Engineering Method
	Other Model-driven Approaches in Web Engineering
	Survey on Practical Application of Related Works

	A Two-way Metamodeling Approach
	Prototyping the Presentation as a Conceptual Model
	A Generic Metamodel for Content-based Web Applications
	Semi-automated Generation of the Web Application
	Administration of the Content
	Limitations

	Case Study
	Requirements and Prototype
	Generating the CMS from the HTML prototype
	Administration of Content

	Evaluation and Results
	Qualitative Results
	Quantitative Results
	Comparative Evaluation

	Conclusions and Discussion
	Conclusions
	Discussion
	Summary

	Bibliography
	Publications of the Author
	Anotace

